Organic Letters
Letter
(7) (a) Benedetti, E.; Ganis, P.; Bombieri, G.; Caglioti, L.; Germain, G.
Acta Crystallogr., Sect. B 1975, B31, 1097. (b) Caglioti, L.; Misiti, D.;
Mondelli, R.; Selva, A.; Arcamone, F.; Cassinelli, G. Tetrahedron 1969,
25, 2193. (c) Cassinelli, G.; Grein, A.; Orezzi, P.; Pennella, P.;
Sanfilippo, A. Arch. Mikrobiol. 1967, 55, 358.
mislocalization. Furthermore, we determined that selected
neoantimycins, antimycins, and respirantin exhibited increased
cytotoxicity toward human lung cancer cells that feature a
mutated oncogenic K-Ras (e.g., A549) versus those that are not
K-Ras mutated (e.g., H522) (1, 50-fold; 5, >26-fold; and 7, >33-
fold).
(8) Vanner, S. A.; Li, X.; Zvanych, R.; Torchia, J.; Sang, J.; Andrews, D.
W.; Magarvey, N. A. Mol. BioSyst. 2013, 9, 2712.
Finally, as up-regulation of ABC transporters such as P-
glycoprotein (P-gp) in cancers can lead to accelerated drug efflux
and multidrug resistance (MDR), we assayed 1−7 against the
colon cancer cell line SW620 and its P-gp overexpressing
daughter cell line SW620 Ad300. In control studies we confirmed
that SW620 Ad300 cells were 22-fold (FR = 22) less sensitive to
doxorubicin than SW620 cells and that coadministration with the
P-gp inhibitor verapamil quenched this efflux effect (FR = 2.4).
By comparison, 1−7 exhibited comparable cytotoxicity toward
both SW620 and SW620 Ad300 cell lines (FR = 2.1−6.5),
confirming that they were largely unaffected by P-gp mediated-
MDR (Table 1).
In conclusion, this study explored the rare neoantimycin,
antimycin, and respirantin structure classes, developing new
microanalytical methodology for assigning absolute configu-
rations, revising structures for known, and discovering and
assigning structures to new neoantimycins. Significantly, this
study discovered a new class of low nM K-Ras inhibitor that is not
subject to P-gp mediated drug efflux.
(9) Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot. 2001, 54, 867.
(10) Umeda, Y.; Chijiwa, S.; Furihata, K.; Furihata, K.; Sakuda, S.;
Nagasawa, H.; Watanabe, H.; Shin-ya, K. J. Antibiot. 2005, 58, 206.
(11) Izumikawa, M.; Ueda, J.-y.; Chijiwa, S.; Takagi, M.; Shin-ya, K. J.
Antibiot. 2007, 60, 640.
(12) Umeda, Y.; Furihata, K.; Sakuda, S.; Nagasawa, H.; Ishigami, K.;
Watanabe, H.; Izumikawa, M.; Takagi, M.; Doi, T.; Nakao, Y.; Shin-ya,
K. Org. Lett. 2007, 9, 4239.
(13) Dunshee, B. R.; Leben, C.; Keitt, G. W.; Strong, F. M. J. Am. Chem.
Soc. 1949, 71, 2436.
(14) (a) Birch, A. J.; Cameron, D. W.; Harada, Y.; Rickards, R. W. J.
Chem. Soc. 1961, 889. (b) Van Tamelen, E. E.; Dickie, J. P.; Loomans, M.
E.; Dewey, R. S.; Strong, F. M. J. Am. Chem. Soc. 1961, 83, 1639.
(15) Kinoshita, M.; Aburaki, S.; Umezawa, S. J. Antibiot. 1972, 25,
373−376.
(16) Kido, G. S.; Spyhalski, E. Science 1950, 112, 172.
(17) Shiomi, K.; Hatae, K.; Hatano, H.; Matsumoto, A.; Takahashi, Y.;
Jiang, C.-L.; Tomoda, H.; Kobayashi, S.; Tanaka, H.; Omura, S. J.
Antibiot. 2005, 58, 74.
(18) Cumming, K. B.; Burress, R. M.; Gilderhus, P. A. Prog. Fish Cult.
1975, 37, 81.
(19) Wikstrom, M. K. F.; Berden, J. A. Biochim. Biophys. Acta, Bioenerg.
1972, 283, 403.
ASSOCIATED CONTENT
■
(20) Tzung, S.-P.; Kim, K. M.; Basanez, G.; Giedt, C. D.; Simon, J.;
Zimmerberg, J.; Zhang, K. Y. J.; Hockenbery, D. M. Nat. Cell Biol. 2001,
3, 183.
(21) Urushibata, I.; Isogai, A.; Matsumoto, S.; Suzuki, A. J. Antibiot.
1993, 46, 701.
(22) Pettit, G. R.; Tan, R.; Pettit, R. K.; Smith, T. H.; Feng, S.; Doubek,
D. L.; Richert, L.; Hamblin, J.; Weber, C.; Chapuis, J.-C. J. Nat. Prod.
2007, 70, 1069.
(23) Salim, A. A.; Xiao, X.; Cho, K.-J.; Piggott, A. M.; Lacey, E.;
Hancock, J. F.; Capon, R. J. Org. Biomol. Chem. 2014, 12, 4872.
S
* Supporting Information
These data include general experimental procedures, NMR
spectroscopic data, C3 Marfey’s and C3 Mosher methods, and K-
Ras and MTT cytotoxicity assays. This material is available free of
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank S. E. Bates and R. W. Robey (NIH, Bethesda, MD) for
providing SW620 and SW620 Ad300, A. M. Piggott (UQ) for
HRMS and NMR spectroscopic support, and D. Vuong and A. E.
Lacey (MST) for assistance with the fermentation and
metabolite purification. This research was funded in part by
The University of Queensland, the Institute for Molecular
Bioscience, the Cancer Prevention and Research Institute of
Texas (RP130059), and the Australian Research Council
(DP120100183 and LP120100088).
REFERENCES
■
(1) Hancock, J. F. Nat. Rev. Mol. Cell Biol. 2003, 4, 373.
(2) Bodemann, B. O.; White, M. A. Curr. Biol. 2013, 23, R17.
(3) Baines, A. T.; Xu, D.; Der, C. J. Future Med. Chem. 2011, 3, 1787.
(4) Cho, K.-J.; Park, J.-H.; Piggott, A. M.; Salim, A. A.; Gorfe, A. A.;
Parton, R. G.; Capon, R. J.; Lacey, E.; Hancock, J. F. J. Biol. Chem. 2012,
287, 43573.
(5) Takeda, Y.; Masuda, T.; Matsumoto, T.; Takechi, Y.; Shingu, T.;
Floss, H. G. J. Nat. Prod. 1998, 61, 978.
(6) Li, X.; Zvanych, R.; Vanner, S. A.; Wang, W.; Magarvey, N. A.
Bioorg. Med. Chem. Lett. 2013, 23, 5123.
5039
dx.doi.org/10.1021/ol502376e | Org. Lett. 2014, 16, 5036−5039