tert-Butyl(dimethylamino)phenylphosphine-Borane
electrochemical reduction or cyanolysis of the corresponding
resolved amidophosphonium salts.7 These phosphinous amides
proved to be configurationally stable but very sensitive to
oxidation. Our current research project required enantiopure
samples of both antipodes of a P-chirogenic aminophosphine
of known absolute configuration. We focused on tert-butyl-
(dimethylamino)phenylphosphine 1, for which racemic alkyl-
amino and dialkylamino analogues have been described.8 Several
diastereomeric alkylamino-tert-butylphenylphosphines related
to 1 deriving from a chiral amine moiety have also been
reported.4 Absolute configuration at the phosphorus atom has
been deduced from the known configuration of the amine moiety
and the relative stereochemistry that could be assigned either
from NMR studies or X-ray diffraction of the crystallized
phosphine or its borane adduct.4,5,9 In the case of P-chiral
compounds related to aminophosphine 1, absolute configurations
have been deduced from chemical correlation with phosphorus
derivatives of known stereochemistry.10 Recently, Polavarapu
et al. have used vibrational circular dichroism (VCD) spectros-
copy in conjunction with density functional theory (DFT)
calculations to determine the predominant conformation and
phosphorus absolute configuration of tert-butylphenylphosphine
oxide,11 tert-butyl-1-(2-methylnaphthyl)phosphine oxide,12 tert-
butylphenylphosphinothioic acid,13 and tert-butylphenylphos-
phinoselenoic acid,14 which are pentavalent phosphorus com-
pounds structurally close to 1. During the last years, VCD has
emerged as a technique of choice to assign absolute configu-
ration to chiral compounds and elucidate their conformational
equilibriums.15 The implementation of quantum mechanical
methods that provide reliable predictions of VCD spectra in
commercial quantum chemistry packages16 made application of
this technique more straightforward.17 General methodology
consists, first, to identify the stable conformations of a chiral
molecule, second, to compute theoretical spectra for each
individual conformer and deduce the population-averaged VCD
spectra for each enantiomer, and third, to compare these spectra
with the experimental record for an enantiopure or enantio-
merically enriched sample in solution.11-15 As far as we know,
this approach has not been previously applied to trivalent
phosphorus compounds.18
In this work, we apply such a combination of DFT calcula-
tions and VCD measurements to assign absolute configuration
to the enantiomers of borane adduct 2 of aminophosphine 1.
Borane protection prevents oxidation of trivalent phosphorus
species 1 and allows easier manipulation and storage.19 Chiral
liquid chromatography contribution to the determination of the
(13) Wang, F.; Polavarapu, P. L.; Drabowicz, J.; Mikolajczyk, M.; Lyzwa,
P. J. Org. Chem. 2001, 66, 9015-9019.
(14) Wang, F.; Polavarapu, P. L.; Drabowicz, J.; Kielbasinski, P.;
Potrzebowski, M. J.; Mikolajczyk, M.; Wieczorek, M. W.; Majzner, W.
W.; Lazewska, I. J. Phys. Chem. A 2004, 108, 2072-2079.
(15) (a) Stephens, P. J.; Devlin, F. J. Chirality 2000, 12, 172-179. (b)
Devlin, F. J.; Stephens, P. J.; Scafato, P.; Superchi, S.; Rosini, C. Chirality
2002, 14, 400-406. (c) Solladie-Cavallo, A.; Marsol, C.; Yaakoub, M.;
Azyat, K.; Klein, A.; Roje, M.; Suteu, C.; Freedman, T. B.; Cao, X.; Nafie,
L. A.; J. Org. Chem. 2003, 68, 7308-7315. (d) Herse, C.; Bas, D.; Krebs,
F. C.; Bu¨rgi, T.; Weber, J.; Wesolowski, T.; Laursen, B. W.; Lacour, J.
Angew. Chem., Int. Ed. 2003, 42, 3162-3166. (e) Bu¨rgi, T.; Urakawa, A.;
Behzadi, B.; Ernst, K.-H.; Baiker, A. New J. Chem. 2004, 28, 332-334.
(f) He, J. T.; Petrovich, A.; Polavarapu, P. L. J. Phys. Chem. A 2004, 108,
1671-1680. (g) Nafie, L. A. J. Phys. Chem. A 2004, 108, 7222-7231. (h)
Taniguchi, T.; Miura, N.; Nishimura, S.-I.; Monde, K. Mol. Nutr. Food
Res. 2004, 48, 246-254. (i) Cere`, V.; Peri, F.; Pollicino, S.; Ricci, A.;
Devlin, F. J.; Stephens, P. J.; Gasparrini, F.; Rompietti, R.; Villani, C. J.
Org. Chem. 2005, 70, 664-669. (j) Devlin, F. J.; Stephens, P. J.; Besse, P.
J. Org. Chem. 2005, 70, 2980-2993.
(16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian
03, revision B.03; Gaussian, Inc.: Wallingford, CT, 2004.
(17) (a) Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J.
Chem. Phys. Lett. 1996, 252, 211-220. (b) Devlin, F. J.; Stephens, P. J.;
Cheeseman, J. R.; Frisch, M. J. J. Phys. Chem. A. 1997, 101, 9912-9924.
(18) Polavarapu et al. have shown that, although tert-butylphenylphos-
phine oxide and tert-butyl-1-(2-methylnaphthyl)phosphine oxide can exist
in an equilibrium between pentavalent and trivalent tautomeric structures,
only one pentavalent (tetracoordinated P) form is present in solution.11,12
(19) The synthesis of phosphines has been extremely simplified by their
protection as phosphine-borane complexes, which are inert to moisture
and air: (a) Imamoto, T. Pure Appl. Chem. 1993, 65, 655-660. (b) Brunel,
J. M.; Faure, B.; Maffei, M. Coord. Chem. ReV. 1998, 178-180, 665-
698. (c) Ohff, M.; Holz, J.; Quirmbach, M.; Bo¨rner, A. Synthesis 1998,
1391-1415. (d) Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197-
1248. (e) Darcel, C.; Kaloun, E. B.; Merde`s, R.; Moulin, D.; Riegel, N.;
Thorimbert, S.; Geneˆt, J. P.; Juge´, S. J. Organomet. Chem. 2001, 624, 333-
343. (f) Maienza, F.; Spindler, F.; Thommen, M.; Pugin, B.; Malan, C.;
Mezzetti, A. J. Org. Chem. 2002, 67, 5239-5249. See also Moulin et al.5j
(4) For diastereoselectivity induced by chiral amines see the following:
(a) Kolodiazhnyi, O. I.; Gryshkun, E. V.; Andrushko, N. V.; Freytag, M.;
Jones, P. G.; Schmutzler, R. Tetrahedron: Asymmetry 2003, 14, 181-184.
(b) Gryshkun, E. V.; Andrushko, N. V.; Kolodiazhnyi, O. I. Phosphorus,
Sulfur Silicon Relat. Elem. 2004, 179, 1027-1046.
(5) For diastereoselectivity induced by chiral diamines, amino alcohols,
or related compounds see the following: (a) Juge´, S.; Stephan, M.; Laffitte,
J. A.; Geneˆt, J. P. Tetrahedron Lett. 1990, 31, 6357-6360. (b) Juge´, S.;
Stephan, M.; Achi, S.; Geneˆt, J. P. Phosphorus, Sulfur, Silicon Relat. Elem.
1990, 49/50, 267-270. (c) Buono, G.; Brunel, J. M.; Faure, B.; Pardigon,
O. Phosphorus, Sulfur Silicon Relat. Elem. 1993, 75, 43-46. (d) Juge´, S.;
Stephan, M.; Merde`s, R.; Geneˆt, J. P.; Halut-Desportes, S. J. J. Chem. Soc.,
Chem. Commun. 1993, 531-533. (e) Chiodi, O.; Fotiadu, F.; Sylvestre,
M.; Buono, G. Tetrahedron Lett. 1996, 37, 39-42. (f) Brunel, J. M.;
Constantieux, T.; Buono, G. J. Org. Chem. 1999, 64, 8940-8942. (g)
Breeden, S.; Wills, M. J. Org. Chem. 1999, 64, 9735-9738. (h) Legrand,
O.; Brunel, J. M.; Buono, G. Angew. Chem., Int. Ed. 1999, 38, 1479-
1483. (i) Brunel, J. M.; Legrand, O.; Reymond, S.; Buono, G. J. Am. Chem.
Soc. 1999, 121, 5807-5808. (j) Moulin, D.; Darcel, C.; Juge´, S. Tetrahe-
dron: Asymmetry 1999, 10, 4729-4743. (k) Ngono, C. J.; Constantieux,
T.; Buono, G. J. Organomet. Chem. 2002, 643-644, 237-246. (l)
Delapierre, G.; Achard, M.; Buono, G. Tetrahedron Lett. 2002, 43, 4025-
4028. (m) Bauduin, C.; Moulin, D.; Kaloun, E. B.; Darcel, C.; Juge´, S. J.
Org. Chem. 2003, 68, 4293-4301. (n) Hersh, W. H.; Xu, P.; Simpson, C.
K.; Grob, J.; Bickford, B.; Hamdani, M. S.; Wood, T.; Rheingold, A. L. J.
Org. Chem. 2004, 69, 2153-2163.
(6) Crepy, K. V. L.; Imamoto, T. Top. Curr. Chem. 2003, 229, 1-40.
(7) (a) Horner, L.; Jordan, M. Phosphorus Sulfur 1980, 8, 225-234. (b)
Horner, L.; Jordan, M. Phosphorus Sulfur 1980, 8, 235-242. (c) Horner,
L. Pure Appl. Chem. 1980, 52, 843-858. (c) For the preparation of the
enantiomers of compounds containing chiral phosphorus centres see the
following: Valentine, D., Jr. Asymmetric Synthesis; Morrison, J. D.; Scott,
J. W. Eds.; Academic Press: New York, 1984; Vol. 4, pp 263-312.
(8) (a) Gruber, M.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat.
Elem. 1993, 80, 181-194. (b) Maier, L.; Diel, P. J. Phosphorus, Sulfur
Silicon Relat. Elem. 1996, 115, 273-300.
(9) Juge´, S.; Stephan, M.; Geneˆt, J. P.; Halut-Desportes, S.; Jeannin, S.
Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1990, C46, 1969-1872.
(10) (a) Horner, L.; Jordan, M. Phosphorus Sulfur 1979, 6, 491-493.
(b) Mikolajczyk, M.; Omelanczuk, J.; Perlikowska, W. Tetrahedron 1979,
35, 1531-1536. (c) Mikolajczyk, M. Pure Appl. Chem. 1980, 52, 959-
972.
(11) Wang, F.; Polavarapu, P. L.; Drabowicz, J.; Mikolajczyk, M. J. Org.
Chem. 2000, 65, 7561-7565.
(12) Wang, F.; Wang, Y.; Polavarapu, P. L.; Li, T.; Drabowicz, J.;
Pietrusiewicz, K. M.; Zygo, K. J. Org. Chem. 2002, 67, 6539-6541.
J. Org. Chem, Vol. 71, No. 15, 2006 5587