A. Kamal et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1927–1929
Table 1. Antimycobacterial activity of thiolactone ring based analogues
1929
Thiolactone analogues
MIC (lg/mL)
M. tuberculosis clinical
isolates
M. tuberculosis H37Rv
ATCC 27294
M. avium
M. intracellulare
ATCC 49601
ATCC 13950
Sensitive
Resistant
7a–e
7f
>16.0
4.0
>16.0
4.0–16.0
>16.0
>16.0
4.0–16.0
>16.0
>16.0
>16.0
>16.0
8.0
>16.0
>16.0
>16.0
4.0
8a–d
8e
>16.0
1.0
1.0–4.0
>16.0
>16.0
1.0–4.0
>16.0
>16.0
8f
9a
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
0.25
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
>16.0
8.0
9b
9c
>16.0
>16.0
>16.0
>16.0
9d–f
10a–f
Isoniazid
>16.0
>16.0
0.125–0.25
>16.0
>16.0
8.0–>16.0
9. Price, A. C.;Choi, K. H.;Heath, R. J.;Li, Z.;White, S.;
Rock, C. O. J. Biol. Chem. 2001, 276, 6551.
10. Kremer, L.;Douglas, J. D.;Baulard, A. R.;Morehouse,
C.;Guy, M. R.;Alland, D.;Dover, L. G.;Lakey, J. H.;
Jacob, W. R.;Brennan, P. J.;Minnikin, D. E.;Besra, G. S.
J. Biol. Chem. 2000, 275, 16857.
analogues containing bromo, methyl thioglycolate
and 1-methyl piperazine groups as linkers resulted in
good antimycobacterial activity whereas compounds
containing morpholine group as linker result in loss of
activity.
11. Douglas, J. D.;Morehouse, C.;Senior, S. J.;Phetsukri, B.;
Campbell, I. B.;Besra, G. S.;Minnikin, D. E. Microbio-
logy 2002, 148, 3101.
References and notes
12. Senior, S. J.;Illarionov, P. A.;Gurcha, S. S.;Campbell, I.
B.;Schaeffer, M. L.;Minnikin, D. E.;Besra, G. S. Bioorg.
Med. Chem. Lett. 2003, 13, 3685.
1. Dve, C.;Scheele, S.;Dolin, P.;Pathania, V.;Raviglione,
M. C. J. Am. Med. Assoc. 1999, 282, 677.
2. Enarson, D. A.;Chretien, J. Curr. Opin. Pulm. Med. 1999,
5, 128.
3. Bishai, W. R.;Chaisson, R. E. Clin. Chest Med. 1997, 18,
115.
13. Senior, S. J.;Illarionov, P. A.;Gurcha, S. S.;Campbell, I.
B.;Schaeffer, M. L.;Minnikin, D. E.;Besra, G. S. Bioorg.
Med. Chem. Lett. 2004, 14, 373.
14. Kamal, A.;Babu, A. H.;Ramana, A. V.;Sinha, R.;
Yadav, J. S.;. Arora, S. K. Bioorg. Med. Chem. Lett.,
submitted for publication.
4. Cole, S. T.;Brosch, R.;Parkhill, J.;Garnier, T.;Churcher,
C.;Harris, D.;Gordon, S. V.;Eiglmeier, K.;Gas, S.;
Barry, C. E.;Tekaia, F.;Badcock, K.;Basham, D.;
Brown, D.;Chillingworth, T.;Connor, R.;Davies, R.;
Devlin, K.;Feltwell, T.;Gentles, S.;Hamlin, N.;Holroyd,
S.;Hornsby, T.;Jagels, K.;Krough, A.;McLean, J.;
Moule, S.;Murphy, L.;Oliver, K.;Osborne, J.;Quail, M.
A.;Rajandream, M. A.;Rogers, J.;Rutter, S.;Seeger, K.;
Skelton, J.;Squares, R.;Squares, S.;Sulston, J. E.;Taylor,
K.;Whitehead, S.;Barrell, B. G. Nature 1998, 393, 537.
5. Kremer, L.;Basera, G. S. Expert Opin. Investig. Drugs
2002, 11, 1033.
15. Wang, C. L. J.;Salvino, J. M. Tetrahedron Lett. 1984, 25,
5243.
16. Selected spectral data for compound 7f: 1H NMR
(200 MHz;CDCl 3) d 1.3 (s, 3H), 1.2–1.5 (m, 10H), 1.6
(d, 3H, J = 6.6 Hz), 1.6–1.9 (m, 3H), 1.8 (s, 3H), 3.4 (t, 2H,
J = 6.6 Hz), 4–4.4 (m, 3H);MS (FAB) 365 [M ++1]. Anal.
Calcd for C16H27BrO2S: C, 52.89;H, 7.49. Found: C,
52.78;H, 7.44.
17. Selected spectral data for compound 8e: 1H NMR
(200 MHz;CDCl 3) d 1.2–1.5 (m, 11H), 1.6 (d, 3H,
J = 6.6 Hz), 1.9 (s, 3H), 2.5 (s, 3H), 3.2 (s, 2H), 3.7 (s,
3H) 4–4.4 (m, 3H);MS (FAB) 361 [M ++1]. Anal. Calcd
for C17H28O4S: C, 56.63;H, 7.83. Found: C, 52.54;H,
7.79.
6. Oishi, H.;Noto, T.;Sasaki, H.;Suzuki, K.;Hayashi, T.;
Okazaki, H.;Ando, K.;Sawada, M. J. Antibiot. (Tokyo)
1982, 35, 391.
7. (a) Nishida, I.;Kawaguchi, A.;Yamada, M.
J. Biol.
18. Selected spectral data for compound 9a: 1H NMR
Chem. 1986, 99, 1447;(b) Heath, R. J.;White, S. W.;
Rock, C. O. Prog. Lipid Res. 2001, 40, 467;(c) Campbell,
J. W.;Cronan, J. E. Annu. Rev. Microbiol. 2001, 55, 305.
8. Tsay, J. T.;Rock, C. O.;Jackowski, S. J. Bacteriology
1992, 174, 508.
(200MHz;CDCl ) d 1.6 (d, 3H, J = 6.6 Hz), 1.7 (s, 3H),
3
1.8–2 (m, 2H), 2.2 (s, 3H), 2.4–2.6 (m, 10H) 4–4.4 (m, 3H);
MS (FAB) 285 [M++1]. Anal. Calcd for C14H24N2O2S: C,
59.12;H, 8.51. Found: C, 59.08;H, 8.48.