systems in a switchable manner, provided the metal precursors are
electrochemically redox active.
Acknowledgements
This work is financially supported by NSF of China (Grant Nos.
20625515, 20721140650, and 20935005 for L. M. and 20805050 for
P. Y.), National Basic Research Program of China (973 Program,
2007CB935603 and 2010CB933502) and Chinese Academy of
Sciences (KJCX2-YW-H11 and KJCX2-YW-W25).
Notes and references
Scheme 1 A schematic illustration of potential-controllable task specific
electrosynthesis and electrodeposition of metal nanoparticles in IL
solvents.
1 (a) Y. Park, T. Kim and S. Park, J. Mater. Chem., 2010, 20, 3637–3641;
(b) S. Miao, Z. Liu, B. Han, X. Yu, J. Du and Z. Miao, Angew. Chem.,
Int. Ed., 2006, 45, 266; (c) L. Qu and L. Dai, J. Am. Chem. Soc., 2005,
127, 10806; (d) Y. Tian, H. Liu and Z. Deng, Chem. Mater., 2006, 18,
5820.
2 (a) X. Huang, S. Neretina and M. A. EI-Sayed, Adv. Mater., 2009, 21,
4880; (b) W. J. Crookes-Goodson, J. M. Slocik and R. R. Naik, Chem.
Soc. Rev., 2008, 37, 2403; (c) T. Tsuda, S. Seino and S. Kuwabata,
Chem. Commun., 2009, 6792; (d) J. Miao, T. Ren, L. Dong, J. Zhu
and H. Chen, Small, 2005, 1, 802.
3 (a) T. M. Day, P. R. Unwin, N. R. Wilson and J. V. Macpherson,
J. Am. Chem. Soc., 2005, 127, 10639; (b) M. Sofos, J. Goldberger,
D. A. Stone, J. E. Allen, Q. Ma, D. J. Herman, W. Tsai,
L. J. Lauhon and S. I. Stupp, Nat. Mater., 2009, 8, 68; (c) J. Yan,
H. Zhou, P. Yu, L. Su and L. Mao, Electrochem. Commun., 2008,
10, 761.
nanoparticles is essentially judged by the relative rate of solvation and
nucleation of the as-formed [Pt0]ad, which is basically determined by
the rate of the production of [Pt0]ad at the vicinity of the electrode. The
rate of [Pt0]ad production is simply controllable by the potentials
2À
employed for the reduction of PtCl6 precursor. When a high
overpotential was applied, the nanoparticles prefer to deposit onto
the ITO electrode surface since the formation rate of [Pt0]ad is fast
and, as a result, the stabilization and thus solubilization of [Pt0]ad by
IL molecules through the steric and/or electrostatic interaction(s) are
suppressed. Conversely, when a low overpotential was applied, the
[Pt0]ad tend to form clusters that are efficiently stabilized by IL
molecules through the steric or electrostatic interaction(s) between
both components. In this case, the nanoparticles prefer to solubilize
into IL solvent to form a homogeneous dispersion. These features
substantially make it possible to control the occurrence of both
synthesis and deposition of Pt nanoparticles to be task specific either
in the different electrochemical systems or in the same electrochemical
systems with a switchable manner.
4 (a) M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 1994, 116, 7401; (b)
B. Yin, H. Ma, S. Wang and S. Chen, J. Phys. Chem. B, 2003, 107,
8898; (c) M. T. Reetz, W. Helbig and S. A. Quaiser, Chem. Mater.,
ꢀ
1995, 7, 2227; (d) L. Rodrıguez-Sanchez, M. C. Blanco and
M. A. Lopez-Quintela, J. Phys. Chem. B, 2000, 104, 9683.
ꢀ
ꢀ
5 (a) B. M. Quinn, C. Dekker and S. G. Lemay, J. Am. Chem. Soc., 2005,
127, 6146; (b) S. Mohamed and T. Ohsaka, Angew. Chem., Int. Ed.,
2006, 45, 5963; (c) K. M. Lee, L. Li and L. Dai, J. Am. Chem. Soc.,
2005, 127, 4122.
6 (a) T. Welton, Chem. Rev., 1999, 99, 2071; (b) V. Khare, Z. Li,
€
A. Mantion, A. A. Ayi, S. Sonkaria, A. Voelkl, A. F. Thunemannc
and A. Taubert, J. Mater. Chem., 2010, 20, 1332; (c) H. Zhang,
X. Li and G. Chen, J. Mater. Chem., 2009, 19, 8223; (d)
G. A. Snook and A. S. Best, J. Mater. Chem., 2009, 19, 4248; (e)
F. Endres, ChemPhysChem, 2002, 3, 144; (f) P. Yu, J. Yan, J. Zhang
and L. Mao, Electrochem. Commun., 2007, 9, 1139.
7 (a) M. Antonietti, D. Kuang, B. Smarsly and Y. Zhou, Angew. Chem.,
Int. Ed., 2004, 43, 4988; (b) K. Biswas and C. N. R. Rao, Chem.–Eur.
J., 2007, 13, 6123; (c) C. W. Scheeren, G. Machado, J. Dupont,
P. F. P. Fichtner and S. R. Texeira, Inorg. Chem., 2003, 42, 4738; (d)
C. W. Scheeren, G. Machado, S. R. Texeira, J. Morais,
J. N. Domingos and J. Dupont, J. Phys. Chem. B, 2006, 110, 13011.
8 (a) J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in
Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chastain, 2nd
edn, Perkin–Elmer Corporation (Physical Electronics), Berlin, 1992;
In summary, a controllable and environmentally friendly method
for task specific synthesis/deposition of metal nanoparticles has been
demonstrated by simply adjusting the potentials for the electro-
chemical reduction of metal precursors with ionic liquids as the green
solvents and with electrons as the reductant. This study essentially
paves a controllable and green route to task specific synthesis/depo-
sition of metal nanoparticles with no requirement of reducing agents,
capping materials, heating, or high pressure and with no production
of toxic substrates. The method is envisaged to be versatile for
controllable synthesis/deposition of metal nanoparticles either in the
different electrochemical systems or in the same electrochemical
5822 | J. Mater. Chem., 2010, 20, 5820–5822
This journal is ª The Royal Society of Chemistry 2010