reSeArCH Letter
NBn2 OH
Me
NBn2 OH
Me
a
b
Ph
Ph
DAD1 D, Sig=220,2 Ref=360,100 (SSL\ATP 2015-07-30 21-19-25\SSL4-200LP-MP.D)
DAD1 D, Sig=220,2 Ref=360,100 (SSL\ATP 2015-09-25 19-59-33\SSL7-223-LP-MP.D)
Me
Me
120
80
40
0
150
(S,S,R)-5a
76% yield
>20/1 d.r.
>99% e.e.
(S,S,S)-5a
33% yield
7/1 d.r.
100
50
0
>99% e.e.
0
5
10
15
20
25
min
0
5
10
15
20
25
30
35
40 min
NBn2 OH
Me
NBn2 OH
DAD1 D, Sig=220,2 Ref=360,100 (SSL\ATP 2015-10-09 14-03-23\SSL7-137.D)
DAD1 C, Sig=210,8 Ref=360,100 (SSL\ATP 2015-10-06 21-00-30\SSL7-241.D)
Ph
Ph
Me
1) (S)-L1
500
400
300
200
100
0
(S)-L1
800
400
(R,R,S)-5a
(S,R,R)-5a
2) (S)-L2
Me
Me
(R,R,R)-5a
33% yield
7/1 d.r.
(R,R,S)-5a
75% yield
>20/1 d.r.
>99% e.e.
0
1) (R)-L1
2) (R)-L2
0
5
10
15
20
25
30
35
40
min
0
5
10
15
20
25
min
min
(R)-L1
O
Ph
O
DAD1 D, Sig=220,2 Ref=360,100 (SSL\ATP 2015-08-04 20-09-20\SSL7-162.D)
DAD1 C, Sig=210,8 Ref=360,100 (SSL\ATP 2015-10-07 10-28-06\SSL7-196A.D)
>99% e.e.
Ph
Me
Me
Me
Me
(R,S,R)-5a
200
100
80
40
0
(R,S,S)-5a
1) (S)-L1
2) (R)-L1
1) (S)-L1
2) (R)-L1
(E)-4a
(Z)-4a
0
NBn2 OH
NBn2 OH
0
5
10
15
20
25
0
5
10
15
20
25
30
35
40
min
Ph
Me
Ph
Me
DAD1 D, Sig=220,2 Ref=360,100 (SSL\NAOYUKI_LC 2015-11-14 02-41-55\SSL7-248B-MP.D)
DAD1 D, Sig=220,2 Ref=360,100 (ZLW\ATP 2015-09-04 19-10-21\SSL7-193.D)
Me
Me
1) (R)-L1
2) (S)-L1
1) (R)-L1
2) (S)-L1
200
150
(S,S,S)-5a
150
100
50
(S,R,R)-5a
64% yield
>20/1 d.r.
>99% e.e.
(S,R,S)-5a
60% yield
13/1 d.r.
(S,R,S)-5a
100
50
0
O
0
>99% e.e.
0
5
10
15
20
25
30
35
40
min
0
5
10
15
20
25
min
NBn2 OH
Me
NBn2 OH
Me
O
O
DAD1 D, Sig=220,2 Ref=360,100 (SSL\ATP 2015-10-09 18-35-13\SSL7-134.D)
PAr2
PAr2
DAD1 C, Sig=210,8 Ref=360,100 (SSL\NAOYUKI_LC 2015-11-14 02-41-55\SSL7-252.D)
Ph
Ph
400
300
200
100
0
400
300
(S,S,R)-5a
(R,R,R)-5a
Me
Me
200
100
0
O
(R,S,R)-5a
61% yield
13/1 d.r.
(R,S,S)-5a
62% yield
>20/1 d.r.
>99% e.e.
L1: DTBM-SEGPHOS
Ar = 3,5-(Me)2-C6H3
L2: DM-SEGPHOS
0
5
10
15
20
25
30
35
40
min
0
5
10
15
20
25
min
>99% e.e.
Time (min)
Figure 5 | All eight stereoisomers of amino alcohols synthesized from
enones. a, Access to all stereoisomers via a reaction using (E)- or (Z)-4a,
showing the catalyst permutations in each step. Isolated yields are
reported. Diastereomeric ratios (d.r.) were determined by NMR analysis
using a crude reaction mixture. b, HPLC traces of all stereoisomeric
amino-alcohol samples. See Supplementary Information for details.
to readily obtained pure geometric alkene isomers—factors that might 19. Shi, S.-L. & Buchwald, S. L. Copper-catalyzed selective hydroamination
reactions of alkynes. Nature Chem. 7, 38–44 (2015).
20. Zhu, S. & Buchwald, S. L. Enantioselective CuH-catalyzed anti-Markovnikov
hydroamination of 1, 1-disubstituted alkenes. J. Am. Chem. Soc. 136,
15913–15916 (2014).
21. Yang, Y., Shi, S.-L., Niu, D., Liu, P. & Buchwald, S. L. Catalytic asymmetric
be generally applicable to the development of other enantio- and dias-
tereodivergent hydrofunctionalization reactions.
received 24 November 2015; accepted 27 January 2016.
Published online 28 March 2016.
hydroamination of unactivated internal olefins to aliphatic amines. Science
349, 62–66 (2015).
1. Jozwiak, K., Lough, W. J. & Wainer, I. W. Drug Stereochemistry: Analytical
22. Niu, D. & Buchwald, S. L. Design of modified amine transfer reagents allows
Methods and Pharmacology 3rd edn (Informa, 2012).
the synthesis of α-chiral secondary amines via CuH-catalyzed hydroamination.
J. Am. Chem. Soc. 137, 9716–9721 (2015).
2. Wermuth, C. G. The Practice of Medicinal Chemistry 3rd edn (Elsevier, 2008).
3. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric
Catalysis Vol. I–III, Suppl. I–II (Springer, 1999).
4. Tian, X. et al. Diastereodivergent asymmetric sulfa-Michael additions of
α-branched enones using a single chiral organic catalyst. J. Am. Chem. Soc.
133, 17934–17941 (2011).
5. McInturff, E. L., Yamaguchi, E. & Krische, M. J. Chiral-anion-dependent
inversion of diastereo- and enantioselectivity in carbonyl crotylation via
ruthenium-catalyzed butadiene hydrohydroxyalkylation. J. Am. Chem. Soc.
134, 20628–20631 (2012).
6. Wang, B., Wu, F., Wang, Y., Liu, X. & Deng, L. Control of diastereoselectivity in tandem
asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis
by cinchona alkaloids. J. Am. Chem. Soc. 129, 768–769 (2007).
7. Yan, X.-X. et al. Highly diastereoselective switchable enantioselective Mannich reaction
of glycine derivatives with imines. J. Am. Chem. Soc. 130, 14362–14363 (2008).
8. Luparia, M. et al. Catalytic asymmetric diastereodivergent deracemization.
Angew. Chem. Int. Edn 50, 12631–12635 (2011).
9. Lu, G., Yoshino, T., Morimoto, H., Matsunaga, S. & Shibasaki, M. Stereodivergent
direct catalytic asymmetric mannich-type reactions of α-isothiocyanato ester
with ketimines. Angew. Chem. Int. Edn 50, 4382–4385 (2011).
10. Mechler, M. & Peters, R. Diastereodivergent asymmetric 1,4-addition of
oxindoles to nitroolefins by using polyfunctional nickel-hydrogen-bond-
azolium catalysts. Angew. Chem. Int. Edn 54, 10303–10307 (2015).
11. Lee, E. C., Hodous, B. L., Bergin, E., Shih, C. & Fu, G. C. Catalytic asymmetric
Staudinger reactions to form β-lactams: an unanticipated dependence of
diastereoselectivity on the choice of the nitrogen substituent. J. Am. Chem. Soc.
127, 11586–11587 (2005).
12. Huber, J. D. & Leighton, J. L. Highly enantioselective imine cinnamylation with a
remarkable diastereochemical switch. J. Am. Chem. Soc. 129, 14552–14553 (2007).
13. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective
organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).
14. Simmons, B., Walji, A. M. & MacMillan, D. W. C. Cycle-specific organocascade
catalysis: application to olefin hydroamination, hydro-oxidation, and
amino-oxidation, and to natural product synthesis. Angew. Chem. Int. Edn 48,
4349–4353 (2009).
23. Bandar, J. S., Pirnot, M. T. & Buchwald, S. L. Mechanistic studies lead to
dramatically improved reaction conditions for the Cu-catalyzed asymmetric
hydroamination of olefins. J. Am. Chem. Soc. 137, 14812–14818 (2015).
24. Miki, Y., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed intermolecular
regioselective hydroamination of styrenes with polymethylhydrosiloxane and
hydroxylamines. Angew. Chem. Int. Edn 52, 10830–10834 (2013).
25. Hannedouche, J. & Schulz, E. Asymmetric hydroamination: a survey of the
most recent developments. Chemistry 19, 4972–4985 (2013).
26. Deutsch, C., Krause, N. & Lipshutz, B. H. CuH-catalyzed reactions. Chem. Rev.
108, 2916–2927 (2008).
27. Barker, T. J. & Jarvo, E. R. Developments in transition-metal-catalyzed reactions
using electrophilic nitrogen sources. Synthesis 24, 3954–3964 (2011).
28. Lipshutz, B. H., Noson, K., Chrisman, W. & Lower, A. Asymmetric hydrosilylation
of aryl ketones catalyzed by copper hydride complexed by nonracemic
biphenyl bis-phosphine ligands. J. Am. Chem. Soc. 125, 8779–8789 (2003).
29. Chen, J.-X. et al. Highly chemoselective catalytic hydrogenation of unsaturated
ketones and aldehydes to unsaturated alcohols using phosphine-stabilized
copper(I) hydride complexes. Tetrahedron 56, 2153–2166 (2000).
30. Moser, R., Boskovic, Z. V., Crowe, C. S. & Lipshutz, B. H. CuH-catalyzed
enantioselective 1,2-reductions of α,β-unsaturated ketones. J. Am. Chem. Soc.
132, 7852–7853 (2010).
Acknowledgements We thank the National Institutes of Health (grant GM-
58160 to S.L.B.). The content of this paper is solely our responsibility and does
not necessarily represent the official views of the National Institutes of Health.
We thank Y.-M. Wang and M. T. Pirnot for help preparing the manuscript. The
departmental X-ray diffraction instrumentation was purchased with the help of
funding from the National Science Foundation (CHE-0946721). We thank
P. Müller for X-ray crystallographic analysis of compound 5a.
Author Contributions S.-L.S. and S.L.B. conceived the idea and designed the
research. S.-L.S. and Z.L.W. performed the experiments. S.-L.S. and S.L.B. wrote
the manuscript. All authors commented on the final draft of the manuscript and
contributed to the analysis and interpretation of the data.
15. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and
diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science
340, 1065–1068 (2013).
16. Schindler, C. S. & Jacobsen, E. N. A new twist on cooperative catalysis. Science
340, 1052–1053 (2013).
17. Nugent, T. C. Chiral Amine Synthesis: Methods, Developments and Applications
(Wiley VCH, 2010).
18. Zhu, S., Niljianskul, N. & Buchwald, S. L. Enantio- and regioselective CuH-catalyzed
hydroamination of alkenes. J. Am. Chem. Soc. 135, 15746–15749 (2013).
Author Information Reprints and permissions information is available at
paper. Correspondence and requests for materials should be addressed to
4
| n A t U R E | V o L 0 0 0 | 0 0 M o n t h 2 0 1 6
© 2016 Macmillan Publishers Limited. All rights reserved