10.1002/cssc.202100944
ChemSusChem
COMMUNICATION
[3]
[4]
F. P. Guengerich, N. G. Avadhani, Adv. Exp. Med. Biol. 2018, 1032, 15-
35.
Recently, we have shown that flavins mediate light-driven
catalysis by bacterial CYP102A1 heme domain using in vitro
systems.[26] In the previous study, the flavin-sensitized CYP102A1
activities mainly resulted from H2O2-supported peroxygenase
activity of the CYP102A1 heme domains. In this study, we found
that human CYP2E1 catalyzes light-driven catalysis with the
direct transfer of photo-induced electrons to the heme iron without
apparent peroxygenase activity. The photobiocatalytic activity of
CYP2E1 was also dependent on the substrate type and the acid
type used as a sacificial electron donor. Futhermore, flavins could
mediate light-driven catalysis by human CYP2E1 and other
various human P450s in whole-cell systems. The current study is
a proof of concept, so the level of productivity is lacking for
industrial applications yet. Future follow-up studies are expected
to improve the productivity through de novo synthesis of
photosensitizers (i.e., FMN and FAD),[16] engineering of P450s
through directed evolution,[27] and reaction optimization of
photochemo-enzymatic whole-cell process.[28]
a) V. B. Urlacher, M. Girhard, Trends Biotechnol. 2019, 37, 882-897; b)
L. Zhang, Z. Xie, Z. Liu, S. Zhou, L. Ma, W. Liu, J.-W. Huang, T.-P. Ko,
X. Li, Y. Hu, J. Min, X. Yu, R.-T. Guo, C.-C. Chen, Nat. Commun. 2020,
11, 2676.
[5]
[6]
[7]
D. S. Choi, Y. Ni, E. Fernandez-Fueyo, M. Lee, F. Hollmann, C. B. Park,
ACS Catal. 2017, 7, 1563–1567.
E. M. Gillam, Z. Guo, F. P. Guengerich, Arch. Biochem. Biophys. 1994,
312, 59-66.
K. H. Kim, J. Y. Kang, D. H. Kim, S. H. Park, S. H. Park, D. Kim, K. D.
Park, Y. J. Lee, H. C. Jung, J. G. Pan, T. Ahn, C. H. Yun, Drug Metab.
Dispos. 2011, 39, 140-150.
[8]
[9]
A. J. Lee, M. X. Cai, P. E. Thomas, A. H. Conney, B. T. Zhu,
Endocrinology 2003, 144, 3382-3398.
V. M. Mishin, T. Koivisto, C. S. Lieber, Anal. Biochem. 1996, 233, 212-
215.
[10] R. Mehvar, R. Vuppugalla, J. Pharm. Sci. 2006, 95, 1414-1424.
[11] Y. Yoshigae, U. M. Kent, P. F. Hollenberg, Biochemistry 2013, 52, 4636-
4647.
[12] M. E. Albertolle, F. P. Guengerich, J. Inorg. Biochem. 2018, 186, 228-
234.
Conclusion
[13] a) L. C. Bell, F. P. Guengerich, J. Biol. Chem. 1997, 272, 29643-29651;
b) A. Menard, C. Fabra, Y. Huang, K. Auclair, Chembiochem 2012, 13,
2527-2536.
We have devised a catalytic scheme for whole-cell-based flavin-
sensitized P450 catalytic reactions that are free of NADPH and a
reductase. The current study demonstrates that the need for
reductase (i.e., CPR) and cofactor NADPH (or its complicated
regenerating system) can be avoided using visible light as a
source of energy and EDTA (or TEOA) as an electron donor. We
have shown that natural flavins mediate light-driven catalysis by
human CYP2E1 both in vitro and in the whole-cell systems. The
photoactivation of flavins was productively coupled with the direct
transfer of photo-induced electrons to CYP2E1 heme iron to boost
the photobiocatalytic C-hydroxylation reactions of P450.
Furthermore, the FMN-sensitized P450 biocatalysis in whole cells
expressing human CYPs 1A1, 1A2, 1B1, and 3A4 for the
bioconversion of marketed drugs and a steroid was conducted to
demonstrate general applicability of the photobiocatalytic system.
The light-driven, flavin-sensitized P450 catalysis paves a cost-
effective and eco-friendly way to create a promising discipline of
green and sustainable chemistry with high potential for P450
applications.
[14] T. Omura, R. Sato, J. Biol. Chem. 1964, 239, 2370-2378.
[15] C. C. C. R. de Carvalho, Biotechnol. Adv. 2011, 29, 75-83.
[16] a) Z. Lin, Z. Xu, Y. Li, Z. Wang, T. Chen, X. Zhao, Microb. Cell Fact. 2014,
13, 104; b) M. J. McAnulty, T. K. Wood, Bioengineered 2014, 5, 386-392;
c) S. Liu, N. Diao, Z. Wang, W. Lu, Y. J. Tang, T. Chen, J. Agric. Food
Chem. 2019, 67, 6532-6540.
[17] a) N. Ma, Z. Chen, J. Chen, J. Chen, C. Wang, H. Zhou, L. Yao, O. Shoji,
Y. Watanabe, Z. Cong, Angew. Chem. Int. Ed. 2018, 57, 7628-7633;
Angew. Chem. 2018, 130, 7754-7759; b) S. Gandomkar, A. Dennig, A.
Dordic, L. Hammerer, M. Pickl, T. Haas, M. Hall, K. Faber, Angew. Chem.
Int. Ed. 2018, 57, 427-430; Angew. Chem. 2018, 130, 434-438; c) J. H.
Park, S. H. Lee, G. S. Cha, D. S. Choi, D. H. Nam, J. H. Lee, J. K. Lee,
C. H. Yun, K. J. Jeong, C. B. Park, Angew. Chem. Int. Ed. 2015, 54, 969-
973; Angew. Chem. 2015, 127, 983-987; d) T. W. Johannes, R. D.
Woodyer, H. Zhao, Biotechnol. Bioeng. 2007, 96, 18-26.
[18] J. Kim, C. B. Park, Curr. Opin. Chem. Biol. 2019, 58, 122-129.
[19] M. Poizat, I. W. C. E. Arends, F. Hollmann, J. Mol. Catal. B Enzym. 2010,
58, 149-156
[20] J. Kim, Y. W. Lee, E. G. Choi, P. Boonmongkolras, B. W. Jeon, H. Lee,
S. T. Kim, S. K. Kuk, Y. H. Kim, B. Shin, C. B. Park, J. Mater. Chem. A
2020, 8, 8496-8502
Acknowledgements
[21] J. Kim, S. H. Lee, F. Tieves, D. S. Choi, F. Hollmann, C. E. Paul, C. B.
Park, Angew. Chem. Int. Ed. 2018, 57, 13825-13828; Angew. Chem.
2018, 130, 14021-14024
This work was supported by the National Research Foundation of
Korea via the Creative Research Initiative Center (Grant number:
NRF-2015R1A3A2066191) and the Basic Research Lab Program
(Grant number: NRF-2018R1A4A1023882), Republic of Korea.
[22] L. M. Schmitz, K. Rosenthal, S. Lütz, Biotechnol. Bioeng. 2019, 116,
3469-3475
[23] L. M. Schmitz, K. Rosenthal, S. Lütz, (2017) Enzyme-Based
Electrobiotechnological Synthesis. In: Harnisch F., Holtmann D. (eds)
Bioelectrosynthesis.
Advances
in
Biochemical
Keywords: biocatalysis • C-H activation • cytochrome P450 •
hydroxylation • photocatalysis
Engineering/Biotechnology, vol 167. Springer, Cham.
[24] Y. W. Lee, P. Boonmongkolras, E. J. Son, J. Kim, S. H. Lee, S. K. Kuk,
J. W. Ko, B. Shin, C. B. Park, Nat. Commun. 2018, 9, 4208.
[25] a) S. Bormann, A. G. Baraibar, Y. Ni, D. Holtmann, F. Hollmann, Catal.
Sci. Technol. 2015, 5, 2038; b) M. K. Julsing, S. Cornelissen, B. Buhler,
A. Schmid, Curr. Opin. Chem. Biol. 2002, 6, 130-135.
[1]
a) Z. Li, Y. Jiang, F. P. Guengerich, L. Ma, S. Li, W. Zhang, J. Biol. Chem.
2020, 295, 833-849; b) F. P. Guengerich, ACS Catal. 2018, 8, 10964-
10976; c) V. B. Urlacher, M. Girhard, Trends Biotechnol. 2012, 30, 26-
36.
[26] T. K. Le, J. H. Park, D. S. Choi, G. Y. Lee, W. S. Choi, K. J. Jeong, C. B.
Park, C. H. Yun, Green Chem. 2019, 21, 515-525.
[2]
a) A. Li, C. G. Acevedo-Rocha, L. D'Amore, J. Chen, Y. Peng, M. Garcia-
Borràs, C. Gao, J. Zhu, H. Rickerby, S. Osuna, J. Zhou, M. T. Reetz,
Angew. Chem. Int. Ed. 2020, 59, 12499-12505; Angew. Chem.
2020,132,12599-12605; b) S. Bähr, S. Brinkmann-Chen, M. Garcia-
Borràs, J. M. Roberts, D. E. Katsoulis, K. N. Houk, F. H. Arnold, Angew.
Chem. Int. Ed. 2020, 59, 15507–15511; Angew. Chem. 2020,132,
15637-15641; c) Y. Li, L. L. Wong, Angew. Chem. Int. Ed. 2019, 58,
9551-9555; Angew. Chem. 2019,131, 9651-9655,
[27] a) F. H. Arnold, Angew. Chem. Int .Ed. 2018, 57, 4143–4148; Angew.
Chem. 2018, 130, 4212-4218; b) C. G. Acevedo-Rocha, C. G. Gamble,
R. Lonsdale, A. Li, N. Nett, S. Hoebenreich, J. B. Lingnau, C. Wirtz, C.
Fares, H. Hinrichs, A. Deege, A. J. Mulholland, Y. Nov, D. Leys, K. J.
McLean, A. W. Munro, M. T. Reetz, ACS Catal. 2018, 8, 4, 3395–3410.
[28] J. Xu, M. Arkin, Y. Peng, W. Xu, H. Yu, X. Lin, Q. Wu, Green Chem. 2019,
21, 1907–1911.
4
This article is protected by copyright. All rights reserved.