Communication
ChemComm
Table 1 Calculated emission energies for SWNT-(C3H6) and SWNT-
(trans-C3H4Me2) after the correction
3 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley
and R. B. Weisman, Science, 2002, 298, 2361–2366.
¨
ˇ
4 A. Hogele, C. Galland, M. Winger and A. Imamoglu, Phys. Rev. Lett.,
2008, 100, 217401.
Calculated
E11*(N)a (eV)
5 Z. Liu, S. Tabakman, K. Welsher and H. Dai, Nano Res., 2009, 2,
85–120.
Addition site
ortho L
ortho L87
ortho L27
Fb
6 K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen,
D. Daranciang and H. Dai, Nat. Nanotechnol., 2009, 4, 773–780.
7 T. Endo, J. Ishi-Hayase and H. Maki, Appl. Phys. Lett., 2015,
106, 113106.
SWNT-(C3H6)
1.126
1.075
0.929
0.786
0.881
1.04
À33
8 X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn and H. Htoon,
Nat. Nanotechnol., 2015, 10, 671–675.
9 S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham and
R. B. Weisman, Science, 2010, 330, 1656–1659.
10 Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu and
K. Matsuda, Nat. Photonics, 2013, 7, 715–719.
SWNT-(trans-C3H4Me2)
ortho L
ortho L87
ortho L27
1.125
1.075
0.929
0.759
0.869
1.032
À33
a
b
Calculated using the method of ref. 34. Oscillator strength values
are obtained using the 1-unit cell at the B3LYP/3-21G level of theory.
11 Y. Maeda, J. Higo, Y. Amagai, J. Matsui, K. Ohkubo, Y. Yoshigoe,
M. Hashimoto, K. Eguchi, M. Yamada, T. Hasegawa, Y. Sato, J. Zhou,
J. Lu, T. Miyashita, S. Fukuzumi, T. Murakami, K. Tohji, S. Nagase
and T. Akasaka, J. Am. Chem. Soc., 2013, 135, 6356–6362.
12 Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon, G. C. Schatz and
Y. Wang, Nat. Chem., 2013, 5, 840–845.
supporting the assignment of the local structure before and
after thermal treatment of 3. However, for clarification of the
exact structure of functionalized SWNTs further studies are
required.
13 Y. Maeda, Y. Takehana, M. Yamada, M. Suzuki and T. Murakami,
Chem. Commun., 2015, 51, 13462–13465.
In conclusion, control of the PL wavelength of quantum
defects on SWNTs was achieved by thermal treatment. The
combination of optical measurements and theoretical calcula-
tions is effective for understanding the structure and properties
of SWNTs, including the isomerization of functionalized
SWNTs. After thermal treatment, red-shifted PL observed from
3a–3d at 1215–1219 nm decreased with an emergence of new PL
peaks at 1249–1268 nm. Although the PL peak intensity was
tuned, new PL peaks at longer wavelength were not observed
from 3e, 4a–4c, and acyclic alkylated SWNTs after thermal
14 Y. Maeda, E. Sone, A. Nishino, Y. Amagai, W. W. Wang, M. Yamada,
M. Suzuki, J. Matsui, M. Mitsuishi, T. Okazaki and S. Nagase,
Chem. – Eur. J., 2016, 22, 15373–15379.
15 Y. Maeda, S. Minami, Y. Takehana, J. S. Dang, S. Aota, K. Matsuda,
Y. Miyauchi, M. Yamada, M. Suzuki, R. S. Zhao, X. Zhao and
S. Nagase, Nanoscale, 2016, 8, 16916–16921.
16 H. Kwon, A. Furmanchuk, M. Kim, B. Meany, Y. Guo, G. C. Schatz
and Y. Wang, J. Am. Chem. Soc., 2016, 138, 6878–6885.
´
17 T. Shiraki, T. Shiraishi, G. Juhasz and N. Nakashima, Sci. Rep., 2016,
6, 28393.
18 A. H. Brozena, M. Kim, L. R. Powell and Y. Wang, Nat. Rev. Chem.,
2019, 3, 375–392.
19 S. Kilina, J. Ramirez and S. Tretiak, Nano Lett., 2012, 12, 2306–2312.
treatment. The DFT and TD-DFT calculations showed that the 20 X. He, B. J. Gifford, N. F. Hartmann, R. Ihly, X. Ma, S. V. Kilina,
Y. Luo, K. Shayan, S. Strauf, J. L. Blackburn, S. Tretiak, S. K. Doorn
absorption and emission energies of functionalized SWNTs are
and H. Htoon, ACS Nano, 2017, 11, 10785–10796.
strongly dependent on the addition patterns. By demonstrating
21 Y. Maeda, K. Kuroda, H. Tambo, H. Murakoshi, Y. Konno,
the relationship between the stability and the local band gap
energy of the functionalized SWNT isomers, it can be seen that
thermal isomerization from kinetic to thermodynamic pro-
ducts is one plausible explanation for the changes in the red-
shifted PL wavelength of functionalized SWNTs.
M. Yamada, P. Zhao, X. Zhao, S. Nagase and M. Ehara, RSC Adv.,
2019, 9, 13998–14003.
22 A. B. I. Smith, R. M. Strongin, L. Brard, G. T. Furst, W. J. Romanow,
K. G. O’wens, R. J. Goldschmidt and R. C. King, J. Am. Chem. Soc.,
1995, 117, 5492–5502.
23 M. Eiermann, F. Wudl, M. Prato and M. Maggini, J. Am. Chem. Soc.,
1994, 116, 8364–8365.
This work was supported by JSPS KAKENHI Grant-in-Aid for
Scientific Research (B) (17H02735, 16H06511, and 16H04104) and
by the National Natural Science Foundation of China (Grant
21573172 and 21773181). The authors also acknowledge financial
support from the PhD short-term academic visiting program and
the Nanotechnology Platform Program (Molecule and Materials
Synthesis: 20191102) of the Ministry of Education, Culture, Sports,
Science, and Technology of Japan.
24 R. A. J. Jassen, J. C. Hummelen and F. Wudl, J. Am. Chem. Soc., 1995,
117, 544–545.
25 W.-W. Yang, Z.-J. Li, F.-F. Li and X. Gao, J. Org. Chem., 2011, 76,
1384–1389.
`
26 E. Allard, L. Riviere, J. Delaunay, D. Dubois and J. Cousseau,
Tetrahedron Lett., 1999, 40, 7223–7226.
27 Y. Maeda, Y. Takehana, J. S. Dang, M. Suzuki, M. Yamada and
S. Nagase, Chem. – Eur. J., 2017, 23, 1789–1794.
28 A. D. Becke and C. H. Schiesser, Tetrahedron Lett., 1985, 41,
3925–3941.
29 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater.
Phys., 1988, 37, 785–789.
30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and
G. A. Petersson, et al., Gaussian 09, Revision E.01, Gaussian, Inc.,
Wallingford CT, 2013.
Conflicts of interest
There are no conflicts to declare.
31 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
32 T. Yanai and D. P. Tew, Chem. Phys. Lett., 2004, 393, 51–57.
33 Y. Maeda, Y. Konno, M. Yamada, P. Zhao, X. Zhao, M. Ehara and
S. Nagase, Nanoscale, 2018, 10, 23012–23017.
Notes and references
1 S. Iijima and T. Ichihashi, Nature, 1993, 363, 603–605.
2 D. S. Bethune, C. H. Klang, M. S. De Vries, G. Gorman, R. Savoy, 34 B. J. Gifford, A. E. Sifain, H. Htoon, S. K. Doorn, S. Kilina and
J. Vazquez and R. Beyers, Nature, 1993, 363, 605–607. S. Tretiak, J. Phys. Chem. Lett., 2018, 9, 2460–2468.
13760 | Chem. Commun., 2019, 55, 13757--13760
This journal is ©The Royal Society of Chemistry 2019