K. B. Sharpless et al.
REVIEWS
[42] a) The fact that stereoelectronic factors disfavor eliminations in small
rings has allowed the stereoselective alkylation of the a-carbon of
carboxylic acids, with oxygen-containing functionality in the b-
position, through heterocyclic enolates with an exocyclic double bond
(D. Seebach, J. D. Aebi, M. Gander-Coquoz, R. Naef, Helv. Chim.
Acta 1987, 70, 1194 ± 1216). For other uses of oxiranyl anions, see: b) T.
Satoh, Chem. Rev. 1996, 96, 3303 ± 3325; c) Y. Mori, Rev. Heteroat.
Chem. 1997, 17, 183 ± 211; d) T. Satoh, S. Kobayashi, S. Nakanishi, K.
Horiguchi, S. Irisa, Tetrahedron 1999, 55, 2515 ± 2528; e) Y. Mori, K.
Yaegashi, H. Furukawa, J. Am. Chem. Soc. 1997, 119, 4557 ± 4558.
[43] Care must be exercised with these reactive electrophiles, since the
ring-opening reactions are exothermic and often autocatalytic when
performed neat with basic amines as the nucleophile. In large-scale
applications without solvent, it is essential to start at a temperature
where the reaction at hand has been shown to be self-sustaining and
the amines then added at a rate to maintain the desired temperature.
If water alone cannot be used as solvent, we often employ boiling n-
propanol or boiling toluene for large-scale applications (depending on
whether or not a protic or aprotic environment is desired (see
refs. [44b] and [45]); in the former case, the addition of water after
cooling often results in precipitation of the product.
[44] Synthesis of cis-1,4-cyclohexadiene epoxides: a) T. W. Craig, G. R.
Harvey, G. A. Berchtold, J. Org. Chem. 1967, 32, 3743 ± 3749; b) G.
Kavadias, S. Velkof, B. Belleau, Can. J. Chem. 1978, 56, 404 ± 409; c) T.
Suami, S. Ogawa, H. Uchino, Y. Funaki, J. Org. Chem. 1975, 40, 456 ±
461; for ring-opening reactions of six-membered ring di- and
triepoxides, see: d) R. Kuehlmeyer, R. Keller, R. Schwesinger, T.
Netscher, H. Fritz, H. Prinzbach, Chem. Ber. 1984, 117, 1765 ± 1800;
e) J. Schubert, R. Keller, R. Schwesinger, H. Prinzbach, Chem. Ber.
1983, 116, 2524 ± 2545; f) C. Rucker, H. Muller-Botticher, W. D.
Braschwitz, H. Prinzbach, U. Reifenstahl, H. Irngartinger, Liebigs
Ann. 1997, 967 ± 989; g) S. Kagabu, C. Kaiser, R. Keller, P. G. Becker,
K. H. Mueller, L. Knothe, G. Rihs, H. Prinzbach, Chem. Ber. 1988, 121,
741 ± 756.
[45] a) H. T. Chang, J. P. Chiang, K. L. Reddy, M. A. Winter, A. K. Yudin,
K. B. Sharpless, unpublished results; b) for previous studies on the
regioselectivity of the ring opening of cis- and trans-1,4-cyclohex-
adiene diepoxides, see: G. Kavadias, R. Droghini, Can. J. Chem. 1979,
57, 1870 ± 1876; F. Haviv, B. Belleau, Can. J. Chem. 1978, 56, 2677 ±
2680; T. Suami, S. Ogawa, H. Uchino, Y. Funaki, J. Org. Chem. 1975,
40, 456 ± 461.
[46] The 1,3-selectivity in the neat reaction (that is, 1 !2) probably stems
from the interplay of two effects: trans-diaxial epoxide opening and
intramolecular epoxide activation by the hydroxy group that is
released in the first step (see Scheme 19). The latter effect is much less
important in the presence of a protic solvent, and thereby allows the
intermediate hydroxy epoxide to react from the other, more stable
chair conformer, which gives rise to the diamine from 1,4-attack (that
is, 1 !3, Scheme 7).
Alonso, A. V. Bedekar, P. G. Andersson, Tetrahedron Lett. 1997, 38,
6897 ± 6900; asymmetric transition metal catalyzed aziridination of
olefins: D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson,
D. M. Barnes, J. Am. Chem. Soc. 1993, 115, 5328 ± 5329; R. E.
Rowenthal, S. Masamune, Tetrahedron Lett. 1991, 32, 7373 ± 7376; Z.
Li, K. B. Conser, E. N. Jacobson, J. Am. Chem. Soc. 1993, 115, 5326 ±
5327; H. Nishikori, T. Katsuki, Tetrahedron Lett. 1996, 37, 9245 ± 9248;
aziridination of olefins with PhI NTs: Y. Yamada, T. Yamamoto,
Chem. Lett. 1975, 361.
[49] a) D. Tanner, C. Birgersson, Tetrahedron Lett. 1991, 32, 2533 ± 2536;
b) D. Tanner, A. Almario, T. Högberg, Tetrahedron 1995, 51, 6061 ±
6070; c) Z. Wang, L. S. Jimenez, J. Org. Chem. 1996, 61, 816 ± 818; d) P.
Besse, H. Veschambre, R. Chenevert, M. Dickman, Tetrahedron:
Assymmetry 1994, 5, 1727 ± 1744; e) P. Wipf, P. C. Fritch, J. Org. Chem.
1994, 59, 4875 ± 4886; f) V. C. O. Njar, R. W. Hartmann, C. H.
Robinson, J. Chem. Soc. Perkin Trans. 1 1995, 985 ± 991; g) P. Crotti,
V. Di Bussolo, L. Favero, F. Macchia, M. Pineschi, Tetrahedron:
Asymmetry 1996, 7, 779 ± 786; h) N. A. J. M. Sommerdijk, P. J. J. A.
Buynsters, H. Akdemir, D. G. Geurts, R. J. M. Nolte, B. Zwanenburg,
J. Org. Chem. 1997, 62, 4955 ± 4960.
[50] a) H. Wenker, J. Am. Chem. Soc. 1935, 57, 2328; b) P. A. Leighton, W.
Perkins, M. L. Renquist, J. Am. Chem. Soc. 1947, 69, 1540; c) C. F. H.
Allen, F. W. Spangler, E. R. Webster, Org. Synth. Coll. Vol. 1963, 4,
433 ± 435; d) A. Galindo, L. Orea, D. Gnecco, R. G. Enríquez, R. A.
Toscano, W. F. Reynolds, Tetrahedron: Asymmetry 1997, 8, 2877 ±
2879.
[51] a) I.-C. Chiu, H. Kohn, J. Org. Chem. 1983, 48, 2857 ± 2866; b) D.
van Ende, A. Krief, Angew. Chem. 1974, 86, 311 ± 312; Angew. Chem.
Int. Ed. Engl. 1974, 13, 279 ± 280.
[52] For a study on the influence of Lewis acids on the nucleophilic
opening of N-acyl aziridines versus their rearrangement to oxazolines,
see: D. Ferraris, W. J. Drury III, C. Cox, T. Lectka, J. Org. Chem. 1998,
63, 4568 ± 4569.
[53] a) H. Stamm, J. Prakt. Chem. 1999, 341, 319 ± 331; b) K. Bellos, H.
Stamm, J. Org. Chem. 1995, 60, 5661 ± 5666.
[54] P.-Y. Lin, K. Bellos, H. Stamm, A. Onistschenko, Tetrahedron 1992, 48,
2359 ± 2372.
[55] See, for example: a) D. Tanner, Angew. Chem. 1994, 106, 625 ± 646;
Angew. Chem. Int. Ed. Engl. 1994, 33, 599 ± 619; b) Y. L. Bennani, G.-
D. Zhu, J. C. Freeman, Synlett 1998, 754 ± 756.
[56] H.-T. Chang, Z. Chen, H. C. Kolb, K. B. Sharpless, unpublished
results.
[57] Opening of aziridines with thiols, see:a) G. Meguerian, L. B. Clapp, J.
Am. Chem. Soc. 1951, 73, 2121 ± 2124; b) J. Legters, L. Thijs, B.
Zwanenburg, Recl. Trav. Chim. Pays-Bas 1992, 111, 1 ± 15; c) H. Shao,
Q. Zhu, M. Goodman, J. Org. Chem. 1995, 60, 790 ± 791.
[58] a) Z.-M. Wang, J. E. Pease, K. R. Dress, K. B. Sharpless, unpublished
results; b) WARNING: When the neat synthesis of 7 (Scheme 9) was
performed on a 3-gram scale, it took off with a ªpopº and most of the
white crystalline product ended up on the ceiling of the fume hood.
The autocatalysis mentioned in ref. [43] is especially dramatic in such
neat amine openings of N-sulfonylaziridines, since the newly created
sulfonamide N H bond, being almost 106 times more acidic than an
alcohol O H group, is especially good at assisting in the opening
process. Such cases need a solvent if the scale is greater than
approximately 5 mmol.
H
OH
HO
O
OH
OH
NuH
O
Nu
O
O
Nu
Nu
Nu
e.g., 2
Nu
1
NuH
[59] For selected examples, see: a) S. E. De Sousa, P. O'Brien, P.
Poumellec, J. Chem. Soc. Perkin Trans. 1 1998, 1483 ± 1492; b) P. A.
Grieco, W. A. Carroll, Tetrahedron Lett. 1992, 33, 4401 ± 4404; c) S. V.
D'Andrea, E. T. Michalson, J. P. Freeman, C. G. Chidester, J. Szmusz-
kovicz, J. Org. Chem. 1991, 56, 3133 ± 3137; d) P. Gmeiner, Hetero-
cycles 1991, 32, 1499 ± 1504; e) R. K. Dieter, N. Deo, B. Lagu, J. W.
Dieter, J. Org. Chem. 1992, 57, 1663 ± 1671; f) S. Zhao, J. P. Freeman,
C. G. Chidester, P. F. von Voigtlander, S. A. Mizsak, J. Szmuszkovicz,
J. Org. Chem. 1993, 58, 4043 ± 4048; g) H. H. Wasserman, C. B. Vu,
Tetrahedron Lett. 1994, 35, 9779 ± 9782; h) S. Zhao, A. Ghosh, S. V.
D'Andrea, J. P. Freeman, P. F. von Voigtlander, D. B. Carter, M. W.
Smith, J. R. Blinn, J. Szmuszkovicz, Heterocycles 1994, 39, 163 ± 170;
i) D.-K. Kim, G. Kim, Y.-W. Kim, J. Chem. Soc. Perkin Trans. 1 1996,
803 ± 808; j) G. Miao, B. E. Rossiter, J. S. Bradshaw, J. Org. Chem.
1995, 60, 8424 ± 8427; k) C. Perrio-Huard, C. Ducandas, M. C. Lasne,
B. Moreau, J. Chem. Soc. Perkin Trans. 1 1996, 2925 ± 2932.
Scheme 19.
[47] For the nucleophilic opening of epoxides derived from tetrahydro-
naphthalene and hexahydroanthracene, see: a) E. Vogel, F. Kuebart,
J. A. Marco, R. Andree, J. Am. Chem. Soc. 1983, 105, 6982 ± 6983;
b) E. Vogel, W. Klug, A. Breuer, Org. Synth. Coll. Vol. 1988, 6, 862 ±
865; c) E. Vogel, M. Biskup, A. Vogel, H. Günther, Angew. Chem.
1966, 78, 755 ± 756; Angew. Chem. Int. Ed. Engl. 1966, 5, 734 ± 735;
d) A. K. Yudin, J. P. Chiang, K. B. Sharpless, unpublished results.
[48] See ref. [33a]; synthesis by transition metal catalyzed aziridination of
olefins, see: H. Kwart, A. A. Kahn, J. Am. Chem. Soc. 1967, 89, 1951 ±
1953; D. Mansury, J.-P. Mahy, D. Annie, B. Gustave, P. Battioni, J.
Chem. Soc. Chem. Commun. 1984, 1161 ± 1163; D. A. Evans, M. M.
Faul, M. T. Bilodeau, J. Org. Chem. 1991, 56, 6744 ± 6746; E. Vedejs, H.
Sano, Tetrahedron Lett. 1992, 33, 3261 ± 3264; M. J. Sodergren, D. A.
2020
Angew. Chem. Int. Ed. 2001, 40, 2004 ± 2021