Organic Letters
Letter
fluorescence emission in the two emission channels (b, e). As
for Hcy, these cells displayed strong fluorescence emission in
the green channel but very low emission in the red channel (c,
f). The cross-sectional analysis of a single cell in the green and
red channels for Cys and Hcy, respectively, displayed a large
signal ratio that demonstrated the utility of probe 1 for
discrimination detection of Cys and Hcy in living cells (j, k)
(Figure S11). Consistently, the exogenous GSH could not
induce the fluorescence responses in the pH 7.8 system (Figure
S12). These minor pH changes induced fluorescence responses
of probe 1 toward Cys and Hcy in living cells promoted a
deeper insight into the activities of the biothiols in biological
systems.
In conclusion, we designed a coumarin-based fluorescent
probe for discriminative detection of Cys and Hcy through two
emission channels. The reaction mechanism involves a
nucleophilic addition step followed by intramolecular cycliza-
tion and cleavage. Probe 1 was able to detect Cys through a
turn-on-ratiometric fluorescence response when the pH of the
reaction was set at 7.6, while Hcy would only undergo the
nucleophilic addition step with a turn-on fluorescence signal.
Increasing the reaction pH up to 8.0 modulated the turn-on
fluorescence at 499 nm of probe 1 toward Cys, Hcy, and GSH
with high selectivity. Further, imaging studies with HepG2 cells
showed that probe 1 can detect Cys and Hcy in live cells using
two emission channels. These results have promoted ongoing
related studies of fluorescent probes for thiols in subcellular
structures at either pH 8.0 in mitochondria or at pH 4.5 in
lysosomes. The pH-promoted detection mechanism provides a
new pathway for the design of thiol probes and may bring a
deeper insight into the biological activities of these amino
thiols.
2014401), Shanxi Province Outstanding Youth Fund (No.
2014021002), Shanxi University funds for study abroad 2014,
and the National Institutes of Health (No. R15EB016870).
REFERENCES
■
(1) (a) Shahrokhian, S. Anal. Chem. 2001, 73, 5972−5978. (b) Kong,
F.; Liu, R.; Chu, R.; Wang, X.; Xu, K.; Tang, B. Chem. Commun. 2013,
49, 9176−9178. (c) Yue, Y.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y. Sens.
Actuators, B 2016, 223, 496−500.
(2) Zhang, Y.; Shao, X.; Wang, Y.; Pan, F.; Kang, R.; Peng, F.; Huang,
Z.; Zhang, W.; Zhao, W. Chem. Commun. 2015, 51, 4245−4248.
(3) (a) Lee, H. Y.; Choi, Y. P.; Kim, S.; Yoon, T.; Guo, Z.; Lee, S.;
Swamy, K. M.; Kim, G.; Lee, J. Y.; Shin, I.; Yoon, J. Chem. Commun.
2014, 50, 6967−6969. (b) Wood, Z. A.; Schroder, E.; Robin Harris, J.;
Poole, L. B. Trends Biochem. Sci. 2003, 28, 32−40.
(4) (a) Jung, H. S.; Chen, X.; Kim, J. S.; Yoon, J. Chem. Soc. Rev.
2013, 42, 6019−6031. (b) Hassan, S. S. M.; Rechnitz, G. A. Anal.
Chem. 1982, 54, 1972−1976.
́
(5) (a) Yin, C.; Huo, F.; Zhang, J.; Martínez-Manez, R.; Yang, Y.; Lv,
̃
H.; Li, S. Chem. Soc. Rev. 2013, 42, 6032−6059. (b) Yang, Y.; Huo, F.;
Yin, C.; Zheng, A.; Chao, J.; Li, Y.; Nie, Z.; Martínez-Manez, R.; Liu,
́
̃
D. Biosens. Bioelectron. 2013, 47, 300−306.
(6) (a) Yang, X.; Guo, Y.; Strongin, R. M. Angew. Chem., Int. Ed.
2011, 50, 10690−10693. (b) Guo, Y.; Yang, X.; Hakuna, L.; Barve, A.;
Escobedo, J. O.; Lowry, M.; Strongin, R. M. Sensors 2012, 12, 5940−
5950. (c) Niu, L. Y.; Guan, Y. S.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.;
Yang, Q. Z. J. Am. Chem. Soc. 2012, 134, 18928−18931. (d) Liu, J.;
Sun, Y. Q.; Huo, Y.; Zhang, H.; Wang, L.; Zhang, P.; Song, D.; Shi, Y.;
Guo, W. J. Am. Chem. Soc. 2014, 136, 574−577. (e) Yin, J.; Kwon, Y.;
Kim, D.; Lee, D.; Kim, G.; Hu, Y.; Ryu, J. H.; Yoon, J. J. Am. Chem. Soc.
2014, 136, 5351−5358. (f) Lim, S. Y.; Hong, K. H.; Kim, D. I.; Kwon,
H.; Kim, H. J. J. Am. Chem. Soc. 2014, 136, 7018−7025. (g) Yang, X.
F.; Huang, Q.; Zhong, Y.; Li, Z.; Li, H.; Lowry, M.; Escobedo, J. O.;
Strongin, R. M. Chem. Sci. 2014, 5, 2177−2183.
(7) (a) Liu, J.; Sun, Y. Q.; Zhang, H.; Huo, Y.; Shi, Y.; Guo, W. Chem.
Sci. 2014, 5, 3183−3188. (b) Zhang, Y.; Shao, X.; Wang, Y.; Pan, F.;
Kang, R.; Peng, F.; Huang, Z.; Zhang, W.; Zhao, W. Chem. Commun.
2015, 51, 4245−4248. (c) Chen, H.; Tang, Y.; Ren, M.; Lin, W. Chem.
Sci. 2016, 7, 1896−1903. (d) Chen, W.; Luo, H.; Liu, X.; Foley, J. W.;
Song, X. Anal. Chem. 2016, 88, 3638−3646.
(8) (a) Yang, C.; Wang, X.; Shen, L.; Deng, W.; Liu, H.; Ge, S.; Yan,
M.; Song, X. Biosens. Bioelectron. 2016, 80, 17−23. (b) Hu, Q.; Yu, C.;
Xia, X.; Zeng, F.; Wu, S. Biosens. Bioelectron. 2016, 81, 341−348.
(9) (a) Li, Z.; Geng, Z. R.; Zhang, C.; Wang, X. B.; Wang, Z. L.
Biosens. Bioelectron. 2015, 72, 1−9. (b) G, U. R.; Agarwalla, H.; Taye,
N.; Ghorai, S.; Chattopadhyay, S.; Das, A. Chem. Commun. 2014, 50,
9899−9902. (c) Sarkar, A. R.; Heo, C. H.; Kim, E.; Lee, H. W.; Singh,
H.; Kim, J. J.; Kang, H.; Kang, C.; Kim, H. M. Chem. Commun. 2015,
51, 2407−2410.
(10) (a) Yang, Y.; Huo, F.; Yin, C.; Chao, J.; Zhang, Y. Dyes Pigm.
2015, 114, 105−109. (b) Huo, F.; Sun, Y. Q.; Su, J.; Chao, J.; Zhi, H.
J.; Yin, C. Org. Lett. 2009, 11, 4918−4921.
(11) (a) Guo, Z.; Nam, S.; Park, S.; Yoon, J. Chem. Sci. 2012, 3, 2760.
(b) Xue, S.; Ding, S.; Zhai, Q.; Zhang, H.; Feng, G. Biosens. Bioelectron.
2015, 68, 316−321. (c) Lee, Y. H.; Ren, W. X.; Han, J.; Sunwoo, K.;
Lim, J. Y.; Kim, J. H.; Kim, J. S. Chem. Commun. 2015, 51, 14401−
14404. (d) Niu, W.; Guo, L.; Li, Y.; Shuang, S.; Dong, C.; Wong, M. S.
Anal. Chem. 2016, 88, 1908−1914.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Synthesis of the probe, structure characterizations,
additional UV−vis and fluorescence spectra, and addi-
tional fluorescence images (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Author Contributions
⊥Y.Y. and F.H. contributed equally.
(12) (a) Yue, Y.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y. Sensor. Actuat.
B-Chem. 2016, 223, 496−500. (b) Barve, A.; Lowry, M.; Escobedo, J.
O.; Huynh, K. T.; Hakuna, L.; Strongin, R. M. Chem. Commun. 2014,
50, 8219−8222. (c) Barve, A.; Lowry, M.; Escobedo, J. O.;
Thainashmuthu, J.; Strongin, R. M. J. Fluoresc. 2016, 26, 731−737.
(13) (a) Shi, W.; Li, X.; Ma, H. Angew. Chem., Int. Ed. 2012, 51,
6432−6435. (b) Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Angew.
Chem., Int. Ed. 2014, 53, 10916−10920. (c) Chen, Y.; Zhu, C.; Cen, J.;
Bai, Y.; He, W.; Guo, Z. Chem. Sci. 2015, 6, 3187−3194.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The work was supported by the National Natural Science
Foundation of China (Nos. 21472118 and 21672131), the
Program for the Top Young and Middle-aged Innovative
Talents of Higher Learning Institutions of Shanxi (No.
2013802), Talents Support Program of Shanxi Province (No.
D
Org. Lett. XXXX, XXX, XXX−XXX