systems. A general experimental method to address this issue is
currently under investigation.
22 H. Taskent-Sezgin, J. A. Chung, P. S. Banerjee, S. Nagarajan,
R. B. Dyer, I. Carrico and D. P. Raleigh, Angew. Chem., Int. Ed.,
2010, 49, 7473–7475.
The azide and nitrile groups of N3CNdU have the potential
to simultaneously probe both the sugar backbone region and
the major groove, respectively, of nucleic acids. The vibrational
signatures of both groups are well resolved from each other
permitting the solvent-dependent azide asymmetric and nitrile
symmetric stretching frequencies to yield site-specific information
about nucleic acid structure and dynamics. For instance, this
minimally invasive modified nucleoside has the potential to aid
in the investigation of conformation changes associated with
DNA-protein interactions and RNA folding.
23 S. X. Ye, T. Huber, R. Vogel and T. P. Sakmar, Nat. Chem. Biol.,
2009, 5, 397–399.
24 S. X. Ye, E. Zaitseva, G. Caltabiano, G. F. X. Schertler,
T. P. Sakmar, X. Deupi and R. Vogel, Nature, 2010, 464,
1386–1389.
25 K. C. Zhang, M. R. Diehl and D. A. Tirrell, J. Am. Chem. Soc.,
2005, 127, 10136–10137.
26 I. S. Carrico, S. A. Maskarinec, S. C. Heilshorn, M. L. Mock,
J. C. Liu, P. J. Nowatzki, C. Franck, G. Ravichandran and
D. A. Tirrell, J. Am. Chem. Soc., 2007, 129, 4874–4875.
27 S. Dutta, R. J. Cook, J. C. D. Houtman, A. Kohen and
C. M. Cheatum, Anal. Biochem., 2010, 407, 241–246.
28 M. W. Nydegger, S. Dutta and C. M. Cheatum, J. Chem. Phys.,
2010, 133, 134506.
29 L. N. Silverman, M. E. Pitzer, P. O. Ankomah, S. G. Boxer and
E. E. Fenlon, J. Phys. Chem. B, 2007, 111, 11611–11613.
30 A. T. Krummel and M. T. Zanni, J. Phys. Chem. B, 2008, 112,
1336–1338.
31 M. D. Watson, X. S. Gai, A. T. Gillies, S. H. Brewer and
E. E. Fenlon, J. Phys. Chem. B, 2008, 112, 13188–13192.
32 X. S. Gai, E. E. Fenlon and S. H. Brewer, J. Phys. Chem. B, 2010,
114, 7958–7966.
33 D. P. C. McGee, A. Vaughn-Settle, C. Vargeese and Y. S. Zhai,
J. Org. Chem., 1996, 61, 781–785.
34 J. R. Reimers and L. E. Hall, J. Am. Chem. Soc., 1999, 121,
3730–3744.
Acknowledgements
We are grateful to Carol Strausser for assistance in the editing
of the manuscript, Lisa Mertzman for obtaining materials and
supplies, and Beth Buckwalter for acquiring the NMR spectra.
This work was supported by an F&M Snavely Summer
Research stipend and a Snavely Research Award to XSG,
the William M. and Lucille M. Hackman Scholars Program to
BAC, a Mellon/CPC New Tasks/New Tools grant to EEF,
and the NIH (R15GM093330) to SHB/EEF.
35 M. G. Maienschein-Cline and C. H. Londergan, J. Phys. Chem. A,
2007, 111, 10020–10025.
36 J. H. Choi, K. I. Oh, H. Lee, C. Lee and M. Cho, J. Chem. Phys.,
2008, 128, 134506.
References
1 C. Jung, J. Mol. Recognit., 2000, 13, 325–351.
2 S. McCoy and W. S. Caughey, Biochemistry, 1970, 9, 2387–2393.
3 I. T. Suydam and S. G. Boxer, Biochemistry, 2003, 42,
12050–12055.
37 B. A. Lindquist and S. A. Corcelli, J. Phys. Chem. B, 2008, 112,
6301–6303.
38 B. A. Lindquist, R. T. Haws and S. A. Corcelli, J. Phys. Chem. B,
2008, 112, 13991–14001.
4 Z. Getahun, C. Y. Huang, T. Wang, B. De Leon, W. F. DeGrado
and F. Gai, J. Am. Chem. Soc., 2003, 125, 405–411.
5 M. J. Tucker, Z. Getahun, V. Nanda, W. F. DeGrado and F. Gai,
J. Am. Chem. Soc., 2004, 126, 5078–5079.
6 K. N. Aprilakis, H. Taskent and D. P. Raleigh, Biochemistry, 2007,
46, 12308–12313.
7 M. J. Tucker, R. Oyola and F. Gai, J. Phys. Chem. B, 2005, 109,
4788–4795.
8 M. J. Tucker, R. Oyola and F. Gai, Biopolymers, 2006, 83,
571–576.
9 J. Tang, R. S. Signarvic, W. F. DeGrado and F. Gai, Biochemistry,
2007, 46, 13856–13863.
10 P. Marek, R. Gupta and D. P. Raleigh, ChemBioChem, 2008, 9,
1372–1374.
11 J. M. Glasscock, Y. J. Zhu, P. Chowdhury, J. Tang and F. Gai,
Biochemistry, 2008, 47, 11070–11076.
12 A. T. Fafarman and S. G. Boxer, J. Phys. Chem. B, 2010, 114,
13536–13544.
13 K. C. Schultz, L. Supekova, Y. Ryu, J. Xie, R. Perera and
P. G. Schultz, J. Am. Chem. Soc., 2006, 128, 13984–13985.
14 S. J. Miyake-Stoner, A. M. Miller, J. T. Hammill, J. C. Peeler,
K. R. Hess, R. A. Mehl and S. H. Brewer, Biochemistry, 2009, 48,
5953–5962.
15 H. Taskent-Sezgin, J. Chung, V. Patsalo, S. J. Miyake-Stoner,
A. M. Miller, S. H. Brewer, R. A. Mehl, D. F. Green, D. P. Raleigh
and I. Carrico, Biochemistry, 2009, 48, 9040–9046.
16 A. T. Fafarman, L. J. Webb, J. I. Chuang and S. G. Boxer, J. Am.
Chem. Soc., 2006, 128, 13356–13357.
39 K. I. Oh, J. H. Choi, J. H. Lee, J. B. Han, H. Lee and M. Cho,
J. Chem. Phys., 2008, 128, 154504.
40 M. M. Waegele and F. Gai, J. Phys. Chem. Lett., 2010, 1, 781–786.
41 A. D. Boese, J. M. L. Martin and W. Klopper, J. Phys. Chem. A,
2007, 111, 11122–11133.
42 J. S. Lee, J. Chem. Phys., 2007, 127, 085104.
43 K. E. Riley and P. Hobza, J. Phys. Chem. A, 2007, 111, 8257–8263.
44 B. Santra, A. Michaelides and M. Scheffler, J. Chem. Phys., 2007,
127, 184104.
45 J. N. Scott, N. V. Nucci and J. M. Vanderkooi, J. Phys. Chem. A,
2008, 112, 10939–10948.
46 E. Lieber, C. N. R. Rao, A. E. Thomas, E. Oftedahl, R. Minnis
and C. V. N. Nambury, Spectrochim. Acta, 1963, 19, 1135–1144.
47 L. K. Dyall and J. E. Kemp, Aust.J. Chem., 1967, 20, 1395–1402.
48 M. J. Tucker, X. S. Gai, E. E. Fenlon, S. H. Brewer and
R. M. Hochstrasser, Phys. Chem. Chem. Phys., 2011, 13,
2237–2241.
49 Y. S. Kim and R. M. Hochstrasser, J. Phys. Chem. B, 2009, 113,
8231–8251.
50 J. Jeon, S. Yang, J. H. Choi and M. Cho, Acc. Chem. Res., 2009,
42, 1280–1289.
51 Z. Ganim, H. S. Chung, A. W. Smith, L. P. Deflores, K. C. Jones
and A. Tokmakoff, Acc. Chem. Res., 2008, 41, 432–441.
52 S. H. Shim, R. Gupta, Y. L. Ling, D. B. Strasfeld, D. P. Raleigh
and M. T. Zanni, Proc. Natl. Acad. Sci. U. S. A., 2009, 106,
6614–6619.
53 H. Maekawa, M. De Poli, C. Toniolo and N. H. Ge, J. Am. Chem.
Soc., 2009, 131, 2042–2043.
17 H. A. McMahon, K. N. Alfieri, C. A. A. Clark and
C. H. Londergan, J. Phys. Chem. Lett., 2010, 1, 850–855.
18 H. Jo, R. M. Culik, I. V. Korendovych, W. F. DeGrado and
F. Gai, Biochemistry, 2010, 49, 10354–10356.
54 J. H. Choi, K. I. Oh and M. H. Cho, J. Chem. Phys., 2008, 129,
174512.
55 B. A. Lindquist, K. E. Furse and S. A. Corcelli, Phys. Chem. Chem.
Phys., 2009, 11, 8119–8132.
19 I. T. Suydam, C. D. Snow, V. S. Pande and S. G. Boxer, Science,
2006, 313, 200–204.
56 S. S. Andrews and S. G. Boxer, J. Phys. Chem. A, 2000, 104,
11853–11863.
20 M. M. Waegele, M. J. Tucker and F. Gai, Chem. Phys. Lett., 2009,
478, 249–253.
57 M. J. Tucker, Y. S. Kim and R. M. Hochstrasser, Chem. Phys.
Lett., 2009, 470, 80–84.
21 K. I. Oh, J. H. Lee, C. Joo, H. Han and M. Cho, J. Phys. Chem. B,
2008, 112, 10352–10357.
58 C. S. Kinnaman, M. E. Cremeens, F. E. Romesberg and
S. A. Corcelli, J. Am. Chem. Soc., 2006, 128, 13334–13335.
c
5930 Phys. Chem. Chem. Phys., 2011, 13, 5926–5930
This journal is the Owner Societies 2011