Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
C O M M U N I C A T I O N S
hybrid polymers, and supramolecular materials, etc. Undoubtedly,
OCPDS will play an important role in providing an important
starting point for multiple avenues of research. The authors believe
that much research will be performed arising from OCPDS.
Acknowledgment. This work was partially supported by Grants-
in-aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and the Gunma
Association for Silicon Science and Technology.
Supporting Information Available: Details of experimental pro-
cedure, spectra of all compounds, and data for crystallographic analysis
for 1,3-bis(p-carboxyphenyl)-1,1,3,3-tetramethyldisiloxane (CIF). This
Figure 1. TGA curves of the three spherosilicates.
References
FT-IR spectra, ESI-MS, and elemental analysis (see Supporting
Information). In the 13C NMR spectrum, the characteristic CdO
signal was observed at 167.2 ppm. The 29Si NMR analysis also
showed two peaks at 3.4 and -108.7 ppm, corresponding to the
M- and Q-type silicons of the spherosilicate, respectively. This result
implies that the spherosilicate cage structure remains intact during
the hydrolysis of ODTPS. In the FT-IR spectrum, the characteristic
absorption peaks appeared at 2300s3300 (O-H stretching), 1697
(CdO stretching), and 1100 (-Si-O-Si- stretching) cm-1. The
result of ESI-MS provides further evidence that the target compound
was formed (m/z ) 988.1, corresponding to [M - 2H]2-; 898.8,
corresponding to [M - 2H - R]2-; 809.4, corresponding to [M -
(1) Provatas, A.; Luft, M.; Mu, J. C.; White, A. H.; Matisons, J. G.; Brian,
W.; Skelton, B. W. J. Organomet. Chem. 1998, 565, 159.
(2) Manson, B. W.; Morrison, J. J.; Coupar, P. I.; Jaffres, P.-A.; Morris, R. E.
J. Chem. Soc., Dalton Trans. 2001, 1123.
(3) Feher, F. J. Gelest 3000-A. Silicon Compounds: Silanes & Silicones; Gelest,
Inc.: Morrisville, PA, 2004; p 55.
(4) Armitage, D. A. Inorganic Rings and Cages, Edward Arnold Ltd.: London,
1972; p 218.
(5) Dare, E. O.; Liu, L.-K.; Peng, J. J. Chem. Soc., Dalton Trans. 2006, 3668.
(6) Recently in many papers, POSS are used incorrectly to represent sphero-
silicates (cages with Q-unit). In this paper, we used cage siloxanes for cage
silsesquioxanes (POSS) and spherosilicates.
(7) Liu, H.; Zheng, S.; Nie, K. Macromolecules 2005, 38, 5088.
(8) Liu, H.; Zheng, S. Macromol. Rapid Commun. 2005, 26, 196.
(9) Constable, G. S.; Lesser, A. J.; Coughlin, E. B. Macromolecules 2004, 37,
1276.
2H - 2R]2-; 719.8, corresponding to [M - 2H - 3R]2-
,
(10) Pielichowski, K.; Njuguna, J.; Janowski, B.; Pielichowski, J. AdV. Polym.
Sci. 2006, 201, 225.
respectively; R ) SiMe2C6H4COOH). More importantly, C, H
analyses agree with the calculated values.
(11) Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111,
1741.
(12) Feher, F. J.; Weller, K. J.; Schwab, J. J. Organometallics 1995, 14, 2009.
(13) Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239.
(14) Pescarmona, P. P.; Waal, J. C. V. D.; Maschmeyer, T. Chem.sEur. J. 2004,
10, 1657.
Figure 1 shows the thermogravimetric analysis of the three
spherosilicates in air (10 °C/min). The three spherosilicates display
different mass loss curves, ascribed to different decomposition
mechanisms. Two mass losses are observed. The first mass loss is
attributed to cleavage of the peripheral arms; whereas, the second
mass loss can be due to decomposition of the Si-O-Si structure
of the cage.22 The initial thermal decomposition temperature (Td)
is defined as the temperature at which 5% mass loss occurs. It is
worth noting that OCPDS exhibits lower Td (180 °C) than ODMPS
(370 °C), which may be ascribed to easier decomposition of the
carboxyphenyl groups than the tolyl groups. As for ODTPS (Td )
164 °C), the increased mass loss rate should be explained by quick
removal of the tribromomethylphenyl groups under heating condi-
tions. The TGA ceramic yields for the three spherosilicates agree
with the theoretical values, respectively (see Supporting Informa-
tion).
(15) Duchateau, R.; Abbenhuis, H. C. L.; Santen, R. A. V.; Thiele, S. K. -H.;
Tol, M. F. H. V. Organometallics 1998, 17, 5222.
(16) Lorenz, V.; Giebmann, S.; Gun’ko, Y. K.; Fischer, A. K.; Gilje, J. W.;
Edelmann, F. T. Angew. Chem., Int. Ed. 2004, 43, 4603.
(17) Liu, H.; Kondo, S.; Tanaka, R; Oku, H.; Unno, M. J. Organomet. Chem.
2008, 693, 1301.
(18) Bassindale, A. R.; Pourny, M.; Taylor, P. G.; Hursthouse, M. B.; Light,
M. E. Angew. Chem., Int. Ed. 2003, 42, 3488.
(19) Sellinger, A.; Laine, R. M. Macromolecules 1996, 29, 2327.
(20) Sellinger, A.; Laine, R. M. Chem. Mater. 1996, 8, 1592.
(21) Zhang, C.; Laine, R. M. J. Am. Chem. Soc. 2000, 122, 6979.
(22) Neumann, D.; Fisher, M.; Tran, I.; Matisons, J. J. Am. Chem. Soc. 2002,
124, 13398.
(23) Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M. J. Am.
Chem. Soc. 2001, 123, 12416.
(24) Brick, C. M.; Tamaki, R.; Kim, S.-G.; Asuncion, M. Z.; Roll, M.; Nemoto,
T.; Ouchi, Y.; Chujo, Y.; Laine, R. M. Macromolecules 2005, 38, 4655.
(25) Brick, C. M.; Ouchi, Y.; Chujo, Y.; Laine, R. M. Macromolecules 2005,
38, 4661.
(26) Brick, C. M.; Chan, E. R.; Glotzer, S. C.; Marchal, J. C.; Martin, D. C.;
Laine, R. M. AdV. Mater. 2007, 19, 82.
In conclusion, we have synthesized a novel octacarboxyphenyl
functionalized spherosilicate monomersOCPDS. The reactivity of
the carboxyphenyl groups makes it an attractive synthetic platform
for derivatives of spherosilicate molecules, new monomers and new
dendrimers, metal-organic framework (MOF) type of materials,
(27) Naka, K.; Fujita, M.; Tanaka, K.; Chujo, Y. Langmuir 2007, 23, 9057.
(28) Ghatge, N. D.; Mohite, S. S. Polyhedron 1987, 6, 435.
(29) Speck, S. B. J. Org. Chem. 1953, 18, 1689.
(30) Robba, M. Ann. Chim. 1960, 5, 351.
JA803513N
9
J. AM. CHEM. SOC. VOL. 130, NO. 31, 2008 10075