Biomacromolecules
Article
(11) Skrott, Z.; Mistrik, M.; Andersen, K. K.; Friis, S.; Majera, D.;
Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.;
Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.;
Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.;
Dou, Q. P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R. J.; Bartek, J.
Alcohol-abuse drug disulfiram targets cancer via p97 segregase
adaptor NPL4. Nature 2017, 552 (7684), 194−199.
(12) Song, W.; Tang, Z.; Lei, T.; Wen, X.; Wang, G.; Zhang, D.;
Deng, M.; Tang, X.; Chen, X. Stable loading and delivery of disulfiram
with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy.
Nanomedicine 2016, 12 (2), 377−86.
(13) Wang, Z.; Tan, J.; McConville, C.; Kannappan, V.; Tawari, P.
E.; Brown, J.; Ding, J.; Armesilla, A. L.; Irache, J. M.; Mei, Q. B.; Tan,
Y.; Liu, Y.; Jiang, W.; Bian, X. W.; Wang, W. Poly lactic-co-glycolic
acid controlled delivery of disulfiram to target liver cancer stem-like
cells. Nanomedicine 2017, 13 (2), 641−657.
(14) Butcher, K.; Kannappan, V.; Kilari, R. S.; Morris, M. R.;
McConville, C.; Armesilla, A. L.; Wang, W. Investigation of the key
chemical structures involved in the anticancer activity of disulfiram in
A549 non-small cell lung cancer cell line. BMC Cancer 2018, 18 (1),
753−764.
(15) Fasehee, H.; Zarrinrad, G.; Tavangar, S. M.; Ghaffari, S. H.;
Faghihi, S. The inhibitory effect of disulfiram encapsulated PLGA NPs
on tumor growth: Different administration routes. Mater. Sci. Eng., C
2016, 63, 587−595.
(16) Zhang, L.; Tian, B.; Li, Y.; Lei, T.; Meng, J.; Yang, L.; Zhang,
Y.; Chen, F.; Zhang, H.; Xu, H.; Zhang, Y.; Tang, X. A Copper-
Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT
Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy.
ACS Appl. Mater. Interfaces 2015, 7 (45), 25147−61.
(17) Duan, X.; Xiao, J.; Yin, Q.; Zhang, Z.; Yu, H.; Mao, S.; Li, Y.
Smart pH-sensitive and temporal-controlled polymeric micelles for
effective combination therapy of doxorubicin and disulfiram. ACS
Nano 2013, 7 (7), 5858−5869.
(18) Wang, C.; Yang, J.; Han, H.; Chen, J.; Wang, Y.; Li, Q.; Wang,
Y. Disulfiram-loaded porous PLGA microparticle for inhibiting the
proliferation and migration of non-small-cell lung cancer. Int. J.
Nanomed. 2017, 12, 827−837.
(19) Fasehee, H.; Dinarvand, R.; Ghavamzadeh, A.; Esfandyari-
Manesh, M.; Moradian, H.; Faghihi, S.; Ghaffari, S. H. Delivery of
disulfiram into breast cancer cells using folate-receptor-targeted
PLGA-PEG nanoparticles: in vitro and in vivo investigations. J.
Nanobiotechnol. 2016, 14, 32−50.
(20) Huo, Q.; Zhu, J.; Niu, Y.; Shi, H.; Gong, Y.; Li, Y.; Song, H.;
Liu, Y. pH-triggered surface charge-switchable polymer micelles for
the co-delivery of paclitaxel/disulfiram and overcoming multidrug
resistance in cancer. Int. J. Nanomed. 2017, 12, 8631−8647.
(21) Gupte, A.; Mumper, R. J. Elevated copper and oxidative stress
in cancer cells as a target for cancer treatment. Cancer Treat. Rev.
2009, 35 (1), 32−46.
(22) Tao, X.; Gou, J.; Zhang, Q.; Tan, X.; Ren, T.; Yao, Q.; Tian, B.;
Kou, L.; Zhang, L.; Tang, X. Synergistic breast tumor cell killing
achieved by intracellular co-delivery of doxorubicin and disulfiram via
core-shell-corona nanoparticles. Biomater. Sci. 2018, 6 (7), 1869−
1881.
(23) Wehbe, M.; Anantha, M.; Shi, M.; Leung, A. W.-Y.; Dragowska,
W. H.; Sanche, L.; Bally, M. B. r Development and optimization of an
injectable formulation of copper diethyldithiocarbamate, an active
anticanceagent. Int. J. Nanomed. 2017, 12, 4129−4146.
(26) Zhang, C.; Bu, W.; Ni, D.; Zhang, S.; Li, Q.; Yao, Z.; Zhang, J.;
Yao, H.; Wang, Z.; Shi, J. Synthesis of Iron Nanometallic Glasses and
Their Application in Cancer Therapy by a Localized Fenton Reaction.
Angew. Chem., Int. Ed. 2016, 55 (6), 2101−2106.
(27) Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic Therapy:
Tumour Microenvironment-Mediated Fenton and Fenton-like
Reactions. Angew. Chem., Int. Ed. 2019, 58 (4), 946−956.
(28) Tang, Z.; Zhang, H.; Liu, Y.; Ni, D.; Zhang, H.; Zhang, J.; Yao,
Z.; He, M.; Shi, J.; Bu, W. Antiferromagnetic Pyrite as the Tumor
Microenvironment-Mediated Nanoplatform for Self-Enhanced Tumor
Imaging and Therapy. Adv. Mater. 2017, 29 (47), 1701683.
(29) Cheng, F.; Su, T.; Luo, K.; Pu, Y.; He, B. The polymerization
kinetics, oxidation-responsiveness, and in vitro anticancer efficacy of
poly(ester-thioether)s. J. Mater. Chem. B 2019, 7, 1005−1016.
(30) Chen, K.; Cai, H.; Zhang, H.; Zhu, H.; Gu, Z.; Gong, Q.; Luo,
K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor
mechanism and potential as nano-prodrug. Acta Biomater. 2019, 84,
339−355.
(31) Pu, Y.; Chang, S.; Yuan, H.; Wang, G.; He, B.; Gu, Z. The anti-
tumor efficiency of poly (L-glutamic acid) dendrimers with polyhedral
oligomeric silsesquioxane cores. Biomaterials 2013, 34 (14), 3658−
3666.
(32) Xu, L.; Yang, Y.; Zhao, M.; Gao, W.; Zhang, H.; Li, S.; He, B.;
Pu, Y. A reactive oxygen species-responsive prodrug micelle with
efficient cellular uptake and excellent bioavailability. J. Mater. Chem. B
2018, 6 (7), 1076−1084.
(33) Feng, J.; Zhuo, R.-X.; Zhang, X.-Z. Construction of functional
aliphatic polycarbonates for biomedical applications. Prog. Polym. Sci.
2012, 37 (2), 211−236.
(34) Li, J.; Zhang, X.; Zhao, M.; Wu, L.; Luo, K.; Pu, Y.; He, B.
Tumor-pH-Sensitive PLLA-Based Microsphere with Acid Cleavable
Acetal Bonds on the Backbone for Efficient Localized Chemotherapy.
Biomacromolecules 2018, 19 (7), 3140−3148.
(35) Liang, Y.; Deng, X.; Zhang, L.; Peng, X.; Gao, W.; Cao, J.; Gu,
Z.; He, B. Terminal modification of polymeric micelles with π-
conjugated moieties for efficient anticancer drug delivery. Biomaterials
2015, 71, 1−10.
(36) Xie, Z.; Guan, H.; Chen, L.; Tian, H.; Chen, X.; Jing, X. Novel
biodegradable poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-
propylene carbonate) copolymers: Synthesis, characterization, and
micellization. Polymer 2005, 46 (23), 10523−10530.
(37) Xiao, H.; Zhou, D.; Liu, S.; Zheng, Y.; Huang, Y.; Jing, X. A
complex of cyclohexane-1,2-diaminoplatinum with an amphiphilic
biodegradable polymer with pendant carboxyl groups. Acta Biomater.
2012, 8 (5), 1859−1868.
(38) Roux, A.; Nonat, A. M.; Brandel, J.; Hubscher-Bruder, V.;
̀
Charbonniere, L. J. Kinetically Inert Bispidol-Based Cu(II) Chelate
for Potential Application to 64/67Cu Nuclear Medicine and
Diagnosis. Inorg. Chem. 2015, 54 (9), 4431−4444.
(39) Xin, K.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D.; Ding, D.;
Wang, Z.; Zhao, Y. Bioinspired Coordination Micelles Integrating
High Stability, Triggered Cargo Release, and Magnetic Resonance
Imaging. ACS Appl. Mater. Interfaces 2017, 9 (1), 80−91.
(40) Gaetke, L. M.; Chow, C. K. Copper toxicity, oxidative stress,
and antioxidant nutrients. Toxicology 2003, 189 (1), 147−163.
(41) Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.;
Sang, Y.; Liu, H.; Bu, W.; Li, L. Self-Assembled Copper-Amino Acid
Nanoparticles for In Situ Glutathione ″AND″ H2O2 Sequentially
Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141,
849−857.
(24) Zhao, P.; Yin, W.; Wu, A.; Tang, Y.; Wang, J.; Pan, Z.; Lin, T.;
Zhang, M.; Chen, B.; Duan, Y.; Huang, Y. Dual-Targeting to Cancer
Cells and M2Macrophages via Biomimetic Delivery of Mannosylated
Albumin Nanoparticles for Drug-Resistant Cancer Therapy. Adv.
Funct. Mater. 2017, 27 (44), 1700403.
(42) Cen, D.; Brayton, D.; Shahandeh, B.; Meyskens, F. L.; Farmer,
P. J. Disulfiram Facilitates Intracellular Cu Uptake and Induces
Apoptosis in Human Melanoma Cells. J. Med. Chem. 2004, 47 (27),
6914−6920.
(25) Chen, W.; Yang, W.; Chen, P.; Huang, Y.; Li, F. Disulfiram
Copper Nanoparticles Prepared with a Stabilized Metal Ion Ligand
Complex Method for Treating Drug-Resistant Prostate Cancers. ACS
Appl. Mater. Interfaces 2018, 10, 41118−41128.
(43) Su, T. A.; Shihadih, D. S.; Cao, W.; Detomasi, T. C.; Heffern,
M. C.; Jia, S.; Stahl, A.; Chang, C. J. A Modular Ionophore Platform
for Liver-Directed Copper Supplementation in Cells and Animals. J.
Am. Chem. Soc. 2018, 140 (42), 13764−13774.
K
Biomacromolecules XXXX, XXX, XXX−XXX