M. Salavati-Niasari / Inorganic Chemistry Communications 13 (2010) 266–272
271
4
00.6, due to the contribution of nitrogen atoms of the ligand. Cop-
(0.025 M). The mixture was then heated while stirring at 90 °C for 24 h. The
solid was filtered, washed with hot distilled water till the filtrate was free from
any copper(II) ion (by AAS of filtrate) content and dried for 10 h at 80 °C under
vacuum. The ionic exchange degree was determined by atomic absorption
spectrophotometer. Typically a 4 g sample of Cu(II)–NaY zeolite was mixed
with 1.60 g of [1,3-bis(2-carboxyaldehydephenoxy)propane] suspended in
per remains in the 2+ oxidation state in encapsulated complexes
and it matches well with the reported values for similar systems
[
33].
In summary, the diaza dioxa macrocyclic complex nanoparti-
100 ml of methanol and then refluxed for 8 h. The solid consisting of
2+
cles, [Cu(R[15 or 16]N
sulated in the nanopores of zeolite by template condensation
between pre-entrapped, [Cu(O
carboxyaldehydephenoxy)propane)] complex with diamine,
2 2
O )] (R = Et, Pr, Ph, Ch), have been encap-
dialdehyde coordinated with Cu(II) in Cu(II)–NaY and denoted as
2+
2 2
[Cu(O O )] @NaY was collected by filtration, washed with methanol. The
2+
resulted zeolites, were Soxhlet extracted with chloroform (for 4 h) and then
with ethanol (for 3 h) to remove excess unreacted dialdehyde and any
copper(II) complexes adsorbed onto the external surface of the zeolite
crystallines. The resulting solids were dried at 70 °C under vacuum for
2 2 2 2
O )] @NaY (O O = [1,3-bis(2-
2
+
[
Cu(N
2 2 2
O -N) ] @NaY. This strategy appears to be effective for
2
4 h.Preparation of complex nanoparticles entrapped in the nanopores of zeolite Y:
the encapsulated of Cu(II) complexes with 15-, 16-membered diaza
dioxa macrocycle ligands derived from [CuO
plate condensation in the nanopores is still possible and no unre-
acted [CuO
spectroscopic data suggest that the encapsulated complex nano-
particle experience very little distortion in the supercage and that
the chemical ligation to the zeolite surface is minimal. The new
complex nanoparticles entrapped in the nanopores of zeolite Y
2+
2+
2 2
To a stirred methanol suspension (100 ml) of [Cu(O O )] @NaY (2 g) were
2 2
O ] @NaY, as tem-
slowly added diamine, 1,2-diaminoethane, 1,3-diaminopropane, 1,2-
phenylenediamine and 1,2-diaminocyclohexane, (under Ar atmosphere). The
mixture was heated under reflux condition for 24 h. The solution was filtered
and the resulting zeolites, were Soxhlet extracted with chloroform (for 4 h)
and then with ethanol (for 4 h) to remove excess unreacted products from
amine-aldehyde condensation and any copper(II) complexes adsorbed onto
the external surface of the zeolite crystallites. The resulting solids were dried
2
+
2
O
2
]
ions was detected. Furthermore, the
2
+
2 2
at 70 °C under vacuum for 12 h. The remaining [Cu(O O )] ions in zeolite
were removed by exchanging with aqueous 0.1 M NaCl solutions. The stability
of the encapsulated complex nanoparticles was checked after the reaction by
UV–vis and possible leaching of the complex was investigated by UV–vis in the
reaction solution after filtration of the zeolite. The amounts of Cu(II)
complexes encapsulated in zeolite matrix were determined by the elemental
analysis and by subtracting the amount of Cu(II) complex left in the solutions
after the synthesis of the materials as determined by UV–vis spectroscopy,
from the amount taken for the synthesis.
2
+
‘
2 2
‘[Cu(R[15]N O )] @NaY (R = Et, Pr, Ph, Ch)” were characterized
by several techniques: chemical analysis and spectroscopic meth-
ods (FT-IR, UV/vis, XRD, BET, DRS, XPS). The Cu(II) complex nano-
particles are proposed to exhibit tetrahedral geometry.
Acknowledgement
[
24] A. Bailey, D.E. Fenton, S.J. Kitchen, T.H. Lilley, M.G. Williams, P.A. Tasker, A.J.
Leonng, L.F. Lindoy, J. Chem. Soc. Dalton Trans. 2989 (1991).
Author is grateful to Council of University of Kashan for provid-
ing financial support to undertake this work.
[25] E. Tas, M. Aslanoglu, A. Kilic, O. Kaplan, H. Temel, J. Chem. Res-(S) 242 (April)
2006).
(
[
[
26] H. Temel, H. Hosgören, M. Boybay, Spectrosc. Lett. 34 (2001) 1.
27] S. Senapoti, K.K. Sarker, T.P. Mondal, C. Sinha, Transit. Met. Chem. 31 (2006)
2
93.
References
[
[
28] S. Ilhan, H. Temel, I. Yilmaz, M. Sekerci, J. Organomet. Chem. 692 (2007) 3855.
29] M.T. Kaczmarek, I. Pospıeszna-Markıewıcz, W. Radecka-Paryzek, J. Inclus.
Phenom. Macro. Chem. 49 (2004) 115.
30] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, third ed.,
Interscience, New York, 1972.
31] A.A.A. Emara, Synth. React. Inorg. Met.-Org. Chem. 29 (1999) 87.
32] T.M. Salama, I.O. Ali, H.A. Gumaa, Micropor. Mesopor. Mater. 113 (2008) 90.
33] J. Cui, W.P. Wang, Y.Z. You, C. Liu, P. Wang, Polymer 45 (2004) 8717.
34] Chemical composition (experimental found are given in parentheses), IR
stretching frequencies, conductive electrical, magnetic momentum, UV. Vis
and mass data of neat and zeolite-encapsulated copper(II) complex
[
[
[
1] P.K. Dutta, J. Inclus. Phenom. Mol. Recognit. Chem. 21 (1995) 215.
2] N.F. Curtis, Coordin. Chem. Rev. 3 (1968) 3.
3] P. Comba, N.F. Curtis, G.A. Lawrence, M.A. O’Leary, B.W. Skelton, A.H. White, J.
Chem. Soc. Dalton Trans. (1988) 2145.
[
[
[
[
[
[
4] N.F. Curtis, in: G.A. Melson (Ed.), Coordination Chemistry of Macrocyclic
Complexes, Plenum, New York, 1982, p. 219.
[
[
[
[
[
5] M. Salavati-Niasari, H. Najafian, Polyhedron 22 (2003) 2633.
6] M. Salavati-Niasari, F. Davar, Inorg. Chem. Commun. 9 (2006) 175.
7] M. Salavati-Niasari, Inorg. Chem. Commun. 7 (2004) 698.
8] M. Salavati-Niasari, J. Mol. Catal. A: Chem. 217 (2004) 87.
9] M.P. Suh, W. Shin, D. Kim, S. Kim, Inorg. Chem. 23 (1984) 618.
nanoparticles: Anal. Calc. for [Cu(Et[15]N
3
1
2
O
2
)](ClO
4
)
2
: C: 37.61 (37.46), H:
(DMF):
(Ar–CH): 3070,
(ClO4 ): 1110, 532, (Substituted
eff (B.M): 1.93, UV–vis (kmax, nm)
)](ClO }–
O–H] , 371,{[Cu(Et[15]N
)](ClO C: 38.69
.99 (3.86), N: 4.62 (4.75), C/N: 8.14 (7.89), Cu: 10.47 (10.23),
K
M
[
[
10] M.P. Suh, W. Shin, H. Kim, C.H. Koo, Inorg. Chem. 26 (1987) 1846.
11] J.B. Harrowfield, A.J. Herbit, P.A. Lay, A.M. Sargeson, A.M. Bond, J. Am. Chem.
Soc. 105 (1983) 5503.
ꢁ1
2
ꢁ1
ꢁ1
80
X
cm mol , IR data (KBr,
m
2
cm ): m(H O): 3334, m
ꢁ
m(Alph.–CH): 2940, 2873,
m(C@N): 1615,
m
m
benzene): 758,
m
(Cu–O): 460, m(Cu–N): 350, l
[
[
12] S.G. Kang, M.S. Kim, K. Ryu, Polyhedron 15 (1996) 1835.
13] M. Rossignoli, P.V. Bernhardt, G.A. Lawrance, M. Maeder, Aust. J. Chem. 50
(
DMF): 240, 271, 328, 611, Mass spectra: m/z: 570, {[Cu(Et[15]N
2
O
2
4 2
)
+
+
2
O
H
2
O–H] , 470, {[Cu(Et[15]N
2
O
2
)](ClO
4
)}–ClO
4
–2H
2
2
(
1997) 529.
+
2
)]}–2ClO
4
–2H
2
O–H] . Anal. Calc. for [Cu(Pr[16]N
2
O
2
4 2
) :
[
[
[
[
[
14] M. Salavati-Niasari, Inorg. Chem. Commun. 7 (2004) 963.
15] M. Salavati-Niasari, Chem. Lett. 34 (2005) 244.
16] M. Salavati-Niasari, F. Davar, Inorg. Chem. Commun. 9 (2006) 263.
17] R.W. Stotz, R.C. Stoufer, Chem. Commun. (1970) 1682.
(
38.52), H: 4.22 (4.17), N: 4.51 (4.69), C/N: 8.58 (8.21), Cu: 10.23 (10.11),
ꢁ1
2
ꢁ1
ꢁ1
K
3
M
(DMF): 175
X
cm mol , IR data (KBr,
m
cm ):
m
(H
2
O): 3340,
m
(Ar–CH):
ꢁ
052,
m
(Alph.–CH): 2941, 2872,
m
(C@N): 1613,
(Cu–O): 461, m(Cu–N): 355, leff (B.M): 1.95,
m
(ClO4 ): 1110, 532,
m(Substituted benzene): 758,
m
18] N. Herron, G.D. Stucky, C.A. Tolman, J. Chem. Soc., Chem. Commun. 1521
UV–vis (kmax, nm) (DMF): 240, 271, 328, 613, Mass spectra: m/z: 584,
(
1986).
+
{[Cu(Et[15]N
2
O
2
)](ClO
385,{[Cu(Et[15]N
)](ClO : C: 42.18 (42.03), H: 3.69 (3.54), N: 4.28 (4.38), C/
4
) }–2H
2
2
O–H] , 484, {[Cu(Et[15]N
2
O
2
)](ClO
4
)}–ClO
4
–
[
[
[
[
[
19] M. Salavati-Niasari, A. Sobhani, J. Mol. Catal. A: Chem. 285 (2008) 58.
20] M. Salavati-Niasari, Micropor. Mesopor. Mater. 92 (2006) 173.
21] M. Salavati-Niasari, F. Davar, M. Mazaheri, Mater. Lett. 62 (2008) 1890.
22] M. Salavati-Niasari, Micropor. Mesopor. Mater. 95 (2006) 248.
23] Preparation of [1,3-Bis(2-carboxyaldehydephenoxy)propane] (dialdehyde):
Dialdehyde was prepared by refluxing a mixture of 2-hydroxybenzaldehyde
+
+
2
H
2
O–H] ,
2 2 4 2
O )]}–2ClO –2H O–H] .
Anal. Calc.
for
[
Cu(Ph[15]N
2
O
2
4 2
)
ꢁ1
2
ꢁ1
N: 9.86 (9.59), Cu: 9.70 (9.53),
cm ):
K
M
(DMF): 170
(Alph.–CH): 2944,
(Substituted benzene): 758, (Cu–O): 468, m
X
cm mol , IR data (KBr,
(C@N): 1624,
(Cu–N): 361,
m
ꢁ1
m
(H
2
O): 3350,
m(Ar–CH): 3075,
m
m
ꢁ
m
ðClO Þ:1110, 532,
m
m
4
l
eff (B.M): 1.96, UV–vis (kmax, nm) (DMF): 240, 271, 328, 609, Mass spectra: m/
(
3
4.0 g, 30 mmol), 1,3-dibromopropane (1.5 ml, 15 mmol) and K
0 mmol) in dry acetone (30 ml). After the completion of the reaction (18 h),
2
CO
3
(4.1 g,
+
z: 618, {[Cu(Et[15]N
2
O
2
)](ClO
O–H] , 420,{[Cu(Et[15]N
Cu(Ch[15]N )](ClO : C: 41.80 (41.69), H: 4.57 (4.43), N: 4.24 (4.36), C/
4
2
) }–2H
2
O–H] , 519, {[Cu(Et[15]N
2
O
2
)](ClO
4
)}–
+
+
ClO
[
4
–2H
2
O )]}–2ClO –2H O–H] . Anal. Calc. for
2 2 4 2
the acetone was evaporated under vacuum and the resulting solid washed
with water to extract the formed KBr. The crude solid product was then
recrystallized
2
O
2
4 2
)
ꢁ1
2
ꢁ1
N: 9.86 (9.56), Cu: 9.61 (9.49),
cm ):
K
M
(DMF): 173
(Alph.–CH)
(Substituted benzene): 758, (Cu–O): 466, m
X
cm mol , IR data (KBr,
2876, (C@N): 1620,
(Cu–N): 354,
m
from
95%
ethanol
to
afford
pure
1,3-Bis(2-
ꢁ1
m
(H
2
O): 3342,
m(Ar–CH): 3066,
m
:
m
carboxyaldehydephenoxy)propane in 55% yield: m.p. 125–129 °C, IR (KBr)
ꢁ
ꢁ
1
1
m
ðClO
4
Þ:1110, 532,
m
m
t
4
6
1
1
(
max 2952, 1701, 1600, 1462, 1243 and 1158 cm
00 MHz) d 9.86 (s, 2H), 7.93 (d, 8.9 Hz, 4H), 7.23 (d, 8.8 Hz, 4H), 4.40 (t,
,
H
NMR (DMSO-d
6
,
l
eff (B.M): 1.99, UV–vis (kmax, nm) (DMF): 240, 271, 328, 610, Mass spectra: m/
+
1
3
z: 624, {[Cu(Et[15]N
2
O
2
)](ClO
O–H] , 425,{[Cu(Et[15]N
.50, Na: 3.28, Si/Al: 2.53, Surface area: 545 m /g, pore volumen: 0.31 ml/g,
Anal. Calc. for Cu(II)–NaY: Si: 21.53, Al: 8.53, Na: 3.36, Co: 3.71, Si/Al: 2.53,
4
)
2
}–2H
2
2
O–H] , 524, {[Cu(Et[15]N
2
O
2
)](ClO
4 2
–2H O–H] . NaY: Si: 21.48, Al:
2
4
)}–
.5 Hz, 4H) and 2.3 (quintet, 6.3 Hz, 2H), C NMR (DMSO-d
62.7, 131.2, 129.1, 114.6, 64.2 and 27.6.Preparation of [Cu(R[15 or
6]N )](ClO O (R = Et, Pr, Ph, Ch): To a stirred solution of dialdehyde
ꢀ2H
1.40 g, 5 mmol) and Cu(ClO O (1.85 g, 5 mmol) in MeOH (60 ml) was
6
, 80 MHz) d 190.5,
+
+
ClO
8
4
–2H
2
O
2
)]}–2ClO
O
2 2
4
)
2
2
4
)
2
ꢀ6H
2
2
2+
Surface area: 532 m /g, pore volumen: 0.30 ml/g, [Cu(Et[15]N
1
5
nm): 608, IR data (KBr,
11.12, H: 1.19, N: 1.33, Cu: 2.83, C/N: 8.36, Cu/N: 2.13, Si: 21.24, Al: 8.39, Na:
5
2
O
2
)] @NaY: C:
added dropwise various diamines (5 mmol) in MeOH (40 ml). After the
addition was completed, the stirring was continued for 2 h. Then the
precipitate was filtered and washed with MeOH and dried in air. The
0.80, H: 1.19, N: 1.36, Cu: 2.87, C/N: 7.94, Cu/N: 2.11, Si: 21.26, Al: 8.40, Na:
.35, Si/Al: 2.53, Surface area: 475 m /g, pore volumen: 0.18 ml/g, DRS (kmax,
2
ꢁ1
2+
2 2
m(C@N) cm ), 1612. [Cu(Pr[16]N O )] @NaY: C:
products
Cu(dialdehyde)] @NaY ([Cu(O
suspended in 100 ml distilled water, which contained Cu(ClO
were
crystallized
from
hot
methanol.Preparation
2 g NaY zeolite was
ꢀ6H
of
2
+
2+
[
2
O
2
)] @NaY):
A
2
.34, Si/Al: 2.53, Surface area: 473 m /g, pore volumen: 0.17 ml/g, DRS (kmax,
4
)
2
2
O