ꢁ
Table 1 Hydrogen bonds for 1 (A and )
ꢂ
(Fig. 3). Between the regions the strongest interactions are the
numerous CH/F interactions.
D–H/A
d(D–H) d(H/A) d(D/A) :(DHA)
In summary, the tetrabenzylcyclen has manifested itself as
a promising fluoride receptor, as it demonstrates the deep accumu-
lation of the anion inside the nest-shaped cyclic trication due to the
N(2)–H(2N)/F(7)
N(3)–H(3N)/F(7)
N(4)–H(1N)/F(7)
O(1W)–H(1W1)/F(5)
0.98(2)
0.97(2)
0.92(2)
0.89(2)
0.85(2)
0.87(2)
0.87(2)
0.92(2)
0.90(2)
0.90(2)
1.68(2)
1.55(2)
1.75(2)
1.87(2)
2.02(2)
2.17(3)
2.22(2)
2.28(4)
1.98(4)
2.00(3)
2.630(2)
2.507(2)
2.647(2)
2.753(2)
2.856(2)
2.945(3)
2.982(3)
2.753(4)
2.777(5)
2.814(6)
161(2)
167(2)
164(2)
174(2)
169(3)
148(3)
146(3)
111(3)
147(6)
151(6)
+
ꢀ
cumulative effect of three NH /F hydrogen bonds and the
shielding effect of four pendant benzyl arms. Compound [H L][F]
[SiF ]$4H O represents the first metal-free complex of this ligand
b
3
O(1W)–H(2W1)/F(2)
c
O(2W)–H(1W2)/F(6)c
O(2W)–H(1W2)/F(1)
O(2W)–H(2W2)/O(3W)
O(4W)–H(1W4)/F(3)
6
2
selected in the crystal state.
a
O(4W)–H(2W4)/O(3W)
References
Symmetry transformations used to generate equivalent atoms:
1
1
2
J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
a
b
–x, y, 1/2–z; 1–x, 2–y, 1–z; 1–x, 1–y, 1–z.
c
A. Bianchi, K. Bowman-Jamesand E. Garcia-Espana, ed.,
Supramolecular Chemistry of Anions, Wiley-VCH, New York, 1997.
K. Bowman-James, Acc. Chem. Res., 2005, 38, 671.
A. A. Baykov, I. P. Fabrichniy, P. Pohjanjoki, A. B. Zyryanov and
R. Lahti, Biochemistry, 2000, 39, 11939.
3
4
fragments separated by C–N bonds in anti-conformations, which
+
maximises the distances between the charged NH -sites (Fig. 2). The
5 V. R. Samygina, V. M. Moiseev, E. V. Rodina, N. N. Vorobyeva,
A. N. Popov, S. A. Kurilova, T. I. Nazarova, S. M. Avaeva and
H. D. Bartunik, J. Mol. Biol., 2007, 366, 1305.
phenyl substituents are arranged in a T-shape mode again with the
dihedral angles between the phenyl rings equal to 68.6(1), 59.2(1),
ꢂ
6
G. G. Yakobson and V. V. Bardin, Fluoride-ion in Organic Chemistry
(Russ.), Nauka, Novosibirsk, 1986.
7 K. O. Christe, D. A. Dixon, H. P. A. Mercier, J. C. P. Sanders,
89.6(1), and 57.1(1) for the A/B/C/D/A sequence. The fluoride sits
ꢁ
.583(1) A from the N -mean plane (the r.m.s. deviation of the fitted
1
4
G. J. Schrobilgen and W. W. Wilson, J. Am. Chem. Soc., 1994, 116,
2850.
R. Z. Gnann, R. I. Wagner, K. O. Christe, R. Bau, G. A. Olah and
ꢁ
atoms of 0.059 A). The three NH-binding sites are involved in similar
strength NH/F hydrogen bonds, with N/F separations ranging
8
ꢁ
within 2.507(2)–2.647(2) A (Table 1). The N(1)/F(7) separation, to
W. W. Wilson, J. Am. Chem. Soc., 1997, 119, 112.
9 T. Tajima, A. Nakajima, Y. Doi and T. Fuchigami, Angew. Chem.,
Int. Ed., 2007, 46, 3550.
ꢁ
the non-protonated nitrogen atom, is equal to 3.148(2) A. The degree
of protonation, as well as the conformation of the macrocyclic cation,
is quite similar to the 1,4,7,10-tetraallyl-10-aza-1,4,7-tri-
10 R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419.
11 J. L. Sessler, P. A. Gale and D.-G. Cho, Anion Receptor Chemistry,
30
Royal Society of Chemistry, Cambridge, UK, 2006.
azoniacyclododecane in its trichloride complex.
1
1
2 J. L. Sessler and D.-G. Cho, Chem. Soc. Rev., 2009, 38, 1647.
3 M. A. Hossain, J. M. Linares, S. Mason, P. Morehouse, D. Powell
and K. Bowman-James, Angew. Chem., Int. Ed., 2002, 41, 2335.
The solid state structure of 1 demonstrates the pronounced
demarcation of hydrophilic and hydrophobic regions. The hydro-
philic regions represent the negatively charged inorganic sheets
expanded parallel to the bc plane and built of the hydrogen-bonded
hexafluorosilicate anions and water molecules (Table 1), the hydro-
phobic regions represent the cyclic azonia-cations centred by fluoride
14 C. A. Ilioudis, D. A. Tocher and J. W. Steed, J. Am. Chem. Soc., 2004,
26, 12395.
1
5 B.-G. Zhang, P. Cai, C.-Y. Duan, R. Miao, L.-G. Zhu, T. Niitsu and
1
H. Inoue, Chem. Commun., 2004, 2206.
16 E. T. Urbansky, Chem. Rev., 2002, 102, 2837.
1
7 (a) M. S. Fonari, Yu. A. Simonov, V. Ch. Kravtsov, V. O. Gelmboldt,
E. V. Ganin, Yu. A. Popkov and L. V. Ostapchuk, J. Inclusion
Phenom. Mol. Recognit. Chem., 1998, 30, 197; (b) Yu. A. Simonov,
M. S. Fonari, V. Ch. Kravtsov, V. O. Gelmboldt, E. V. Ganin,
L. O. Ostapchuk, A. A. Ennan, Yu. A. Popkov and J. Lipkowski,
Russ. J. Inorg. Chem., 1998, 43, 1982; (c) M. S. Fonari,
V. Ch. Kravtsov, Yu. A. Simonov, E. V. Ganin and
V. O. Gelmboldt, J. Struct. Chem., 1999, 40, 1002.
1
8 V. O. Gelmboldt, Ed. V. Ganin, M. S. Fonari, Yu. A. Simonov,
L. V. Koroeva, A. A. Ennan, S. S. Basok, S. Shova, H. Kahlig,
V. B. Arion and B. K. Keppler, Dalton Trans., 2007, 2915.
9 M. A. Hossain, P. Morehouse, D. Powell and K. Bowman-James,
Inorg. Chem., 2005, 44, 2143.
1
2
2
0 M. C. Das, S. K. Ghosh and P. K. Bharadwaj, Dalton Trans., 2009,
6
496.
1 M. Fonari, E. Ganin, V. Gelmboldt, S. Basok, B. Luisi and
B. Moulton, Inorg. Chem. Commun., 2008, 11, 497.
22 H. Stetter and K. H. Mayer, Chem. Ber., 1961, 94, 1410.
23 J. P. Collman and P. W. Schneider, Inorg. Chem., 1966, 5, 1380.
24 D. Kong, L. Meng, L. Song and Y. Xie, Transition Met. Chem., 1999,
2
4, 553.
5 Crystal data for L: C36
2
H
44
N
4
, M
r
¼ 532.75, monoclinic, P2 /n, l ¼
1
ꢁ
ꢁ
0
1
.71073 A, a ¼ 15.285(3), b ¼ 6.467(1), c ¼ 16.654(2) A, V ¼
ꢁ
ꢀ3 ꢀ1
c
3
540.6(4) A , Z ¼ 2, D
¼ 1.148 g cm , m ¼ 0.067 mm , q
ꢂ
range 1.56–25.07 , GOF ¼ 1.025, R
1
¼ 0.0488, wR
2
¼ 0.1210
¼ 0.1363
for 1962 reflections with I > 2s(I), R
for all 2719 unique reflections. Crystal data for 1:
1
¼ 0.0726, wR
2
ꢁ
C
36
H
55
F
7
N
4
O
4
Si, M
r
¼ 768.93, monoclinic, C2/c, l ¼ 0.71073 A,
ꢁ
a ¼ 37.0414(14), b ¼ 11.1521(4), c ¼ 19.2636(7) A, V ¼ 7835.6
ꢁ
3
ꢀ3
ꢀ1
(
5) A , Z ¼ 8, D
c
¼ 1.304 g cm , m ¼ 0.136 mm , q range
¼ 0.0399, wR ¼ 0.0809 for 3577
ꢂ
Fig. 3 Fragment of crystal packing for 1.
2.95–25.50 , GOF ¼ 0.841, R
1
2
3
684 | CrystEngComm, 2011, 13, 3682–3685
This journal is ª The Royal Society of Chemistry 2011