J. E. D. Kirkham et al. / Tetrahedron Letters 45 (2004) 5645–5647
5647
R-8 was removed by ammonium fluoride in methanol to
References and notes
10
afford 11 in 91% yield. To the best of our knowledge
there is currently no example of deprotection of a
trimethylsilyl group from a terminal trimethylsilylacet-
ylenic group using ammonium fluoride. Cadiot–Chod-
1. Watanabe, K.; Tsuda, Y.; Yamane, Y.; Takahashi, H.;
Iguchi, K.; Naoki, H.; Fujita, T.; Van Soest, R. W. M.
Tetrahedron Lett. 2000, 41, 9271–9276.
11
12
2. Yadav, J. S.; Mishra, R. K. Tetrahedron Lett. 2002, 43,
kiewicz coupling of 11 and 2-bromopropyn-1-ol 12
delivered R-2 in 82% yield (Scheme 1).
1
739–1741.
. Reber, S.; Kn o€ pfel, T. F.; Carreira, E. M. Tetrahedron
003, 59, 6813–6817.
. Brown, C. A.; Yamashita, A. J. Am. Chem. Soc. 1975, 97,
91–892.
5. Abrams, S. R.; Shaw, A. G. Org. Synth. Coll. 8 1993, 146–
148.
6. (a) Bengstoon, M.; Liljefors, T. Synthesis 1988, 51, 250–
252; (b) Kaiser, A.; Marazano, C.; Mater, M. J. Org.
Chem. 1999, 64, 3778–3782.
7. (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994,
5, 8019–8022; (b) Frigerio, M.; Santagostino, M.; Spu-
tore, S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272–7276;
c) Frigerio, M.; Santagostino, M.; Sputore, S. J. Org.
Chem. 1999, 64, 4537–4538.
. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1997, 119, 8738–8739.
3
4
2
The synthesis of 1 commenced with the Lindlar hydro-
genation of 6 to 13 in 86% yield, which was oxidised to
13
8
7
aldehyde 14 in 87% yield by IBX in THF/DMSO.
Reaction of aldehyde 14 with lithium trimethylacetylide
delivered rac-15 in 76% yield. Oxidation of rac-15 with
IBX afforded a 93% yield of ynone 16 and subsequent
chiral reduction of 16 with catalyst 10 in propan-2-ol
8
9
gave R-15 in 97% yield with 95% ee. Removal of the
trimethylsilyl group from R-15 was effected with
3
10
ammonium fluoride in methanol to deliver terminal
acetylenic alcohol 17 in quantitative yield, which was
(
11
coupled with 12 to afford R-2 in 80% yield (Scheme 2).
8
The spectral data and specific rotation values of both
R-1 and R-2 are in excellent agreement with their cor-
responding literature values. In summary, we have
developed an efficient synthesis of R-1 and R-2 without
the deliberate use of protecting groups. We have also
demonstrated that the Noyori reduction of ynones 9 and
9. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969,
34, 2543–2549.
1
0. For the application of NH
ethers, see: Zhang, W.; Robins, M. J. Tetrahedron Lett.
992, 33, 1177–1180.
4
F in deprotection of silyl
1
1
1. (a) Brandsma, L. Preparative Acetylene Chemistry. 2nd
ed.; Elsevier: Oxford, 1988, Chapter 10, pp 212–230; (b)
Siemsen, P.; Livingston, R. C.; Diederich, F. Angew.
Chem., Int. Ed. 2000, 39, 2632–2657.
16 were achieved with high yields and high enantiomeric
excess. In addition, compound 5 could also be a useful
intermediate for the synthesis of other members of the
strongylodiols.
1
1
1
2. Polt, R.; Sames, D.; Chruma, J. J. Org. Chem. 1999, 64,
6147–6158.
3. Poulain, S.; Noiret, N.; Nugier-Chauvin, C.; Patin, H.
Liebigs Ann. 1997, 35–40.
4. Watanabe, K.; Tsuda, Y.; Yamane, Y.; Takahashi, H.;
Iguchi, K.; Naoki, H.; Fujita, T. Tennen Yuki Kagobutsu
Toronkai Koen Yoshishu. 42nd ed.; Nippon Kagakka,
2000.
14
Acknowledgements
We thank Professor Kazuo Iguchi for providing us with
the spectra of natural strongylodiols A and B.