Communication
Green Chemistry
have similar potential for the synthesis of secondary and ter-
tiary amines, if the following issues are optimized in future
studies: identifying or creating IREDs that (i) are highly active
and stable to decrease the enzyme load and (ii) convert high
ketone concentrations with preferentially one equivalent of the
amines. Increasing efficiency was also a challenge when IREDs
were first investigated for reduction of cyclic imines. The
characterization of a large number of IREDs showed that
specific activities and enantioselectivities vary considerably. A
few enzymes could be identified that are highly active, e.g. the
2 D. Ghislieri and N. J. Turner, Top. Catal., 2014, 57, 284–300.
3 T. C. Nugent and S. M. Marinova, Synthesis, 2013, 153–166.
4 T. C. Nugent and M. El-Shazly, Adv. Synth. Catal., 2010, 352,
753–819.
5 T. L. Church and P. G. Andersson, in Chiral Amine
Synthesis, Wiley-VCH, Weinheim, 2010, pp. 179–223.
6 R. Wohlgemuth, Curr. Opin. Biotechnol., 2010, 21, 713–724.
7 N. Q. Ran, L. S. Zhao, Z. M. Chen and J. H. Tao, Green
Chem., 2008, 10, 361–372.
8 U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas,
S. Lutz, J. C. Moore and K. Robins, Nature, 2012, 485, 185–
194.
9 H. Kohls, F. Steffen-Munsberg and M. Höhne, Curr. Opin.
Chem. Biol., 2014, 19, 180–192.
2
6
IRED from Amycolatopsis orientalis having a 100-fold higher
activity in the formation of (S)-amines compared to the first
3
8
discovered (S)-selective IRED from Streptomyces GF3546.
Compared to imine reduction, where already high product
2
4,27
concentrations of up to 480 mM can be reached,
ongoing 10 M. Höhne and U. T. Bornscheuer, ChemCatChem, 2009, 1,
enzyme and reaction engineering efforts for the reductive
42–51.
amination will increase the eco-efficiency of this one-step 11 N. J. Turner, Curr. Opin. Chem. Biol., 2010, 14, 115–121.
route. Protein engineering will be the method of choice to 12 W. Kroutil, E.-M. Fischereder, C. S. Fuchs, H. Lechner,
broaden the substrate specificity towards bulky ketones and
larger amines. Especially the potential of IREDs to synthesize
chiral tertiary amines will be further exploited and optimized,
F. G. Mutti, D. Pressnitz, A. Rajagopalan, J. H. Sattler,
R. C. Simon and E. Siirola, Org. Process Res. Dev., 2013, 17,
751–759.
as the number of possible (pharmaceutical) targets is large. 13 J. H. Schrittwieser and V. Resch, RSC Adv., 2013, 3, 17602–
Tertiary amines are even more diverse in their molecular archi- 17632.
tecture compared to secondary amines and thus it is impor- 14 J. D. Stewart, Curr. Opin. Chem. Biol., 2001, 5, 120–129.
tant to identify or create a toolbox of enzymes having the 15 M. Fuchs, J. E. Farnberger and W. Kroutil, Eur. J. Org.
desired substrate specificities.
Chem., 2015, 6965–6982.
16 N. Itoh, C. Yachi and T. Kudome, J. Mol. Catal. B: Enzym.,
2000, 10, 281–290.
Conclusion
17 B. R. Bommarius, M. Schurmann and A. S. Bommarius,
Chem. Commun., 2014, 50, 14953–14955.
We explored IREDs for the synthesis of pharmaceutical com-
pounds and demonstrated the synthesis of both enantiomers
of rasagiline and for the first time the ability of IREDs to
synthesize tertiary amines. This paves the way for further devel-
oping the IRED toolbox for the eco-efficient one-step synthesis
of pharmaceuticals containing chiral secondary and tertiary
amines.
1
1
2
2
8 J. H. Schrittwieser, S. Velikogne and W. Kroutil, Adv. Synth.
Catal., 2015, 357, 1655–1685.
9 G. Grogan and N. J. Turner, Chem. – Eur. J., 2016, 22, 1900–
1
907.
0 D. Gamenara and P. D. de Maria, Org. Biomol. Chem., 2014,
2, 2989–2992.
1
1 D. Wetzl, M. Berrera, N. Sandon, D. Fishlock, M. Ebeling,
M. Müller, S. Hanlon, B. Wirz and H. Iding, ChemBioChem,
2
015, 16, 1749–1756.
Acknowledgements
2
2 P. N. Scheller, S. Fademrecht, S. Hofelzer, J. Pleiss,
F. Leipold, N. J. Turner, B. M. Nestl and B. Hauer,
ChemBioChem, 2014, 15, 2201–2204.
3 S. Hussain, F. Leipold, H. Man, E. Wells, S. P. France,
K. R. Mulholland, G. Grogan and N. J. Turner,
ChemCatChem, 2015, 7, 579–583.
4 M. Gand, C. Thöle, H. Müller, H. Brundiek, G. Bashiri and
M. Höhne, J. Biotechnol., 2016, 230, 11–18.
5 S. Fademrecht, P. N. Scheller, B. M. Nestl, B. Hauer and
J. Pleiss, Proteins: Struct., Funct., Bioinf., 2016, 84, 600–610.
6 G. A. Aleku, H. Man, S. P. France, F. Leipold, S. Hussain,
We thank our partners of the IRED research consortium
Dr. Dennis Wetzl and Dr. Hans Iding (Hoffman-La Roche Ltd),
Prof. Dr. Michael Müller, Prof. Dr. Dörte Rother, and Dr. Henrike
Brundiek (Enzymicals AG) for inspiring and fruitful discussions.
We also thank Ina Menyes and Gabriele Thede for analytical
support, Stephan Starke, Lukas Krautschick for experimental
assistance, and Hubertus Müller for discussions in the lab. We
thank Prof. Dr. Bornscheuer for his support and the ability to
use their lab equipment.
2
2
2
2
L.
J. P. Turkenburg, G. Grogan and N. J. Turner, ACS Catal.,
016, 6, 3880–3889.
Toca-Gonzalez,
R.
Marchington,
S.
Hart,
Notes and references
2
1
M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keßeler, 27 D. Wetzl, M. Gand, A. Ross, H. Müller, P. Matzel,
R. Stürmer and T. Zelinski, Angew. Chem., Int. Ed., 2004, 43,
88–824.
S. P. Hanlon, M. Müller, B. Wirz, M. Höhne and H. Iding,
ChemCatChem, 2016, 8, 2023–2026.
7
Green Chem.
This journal is © The Royal Society of Chemistry 2016