128
P. Klaeboe et al. / Journal of Molecular Structure 1015 (2012) 120–128
Very strong IR bands with a Q-branch at 996 cmꢀ1 are attrib-
uted to m16 of both conformers, involving predominantly C-C
stretch. The vapor bands at 881, 878 and 873 cmꢀ1 form R, Q and
P branches with possible AB hybride contour, and they are, in addi-
Theoretical and Computational Chemistry (CTCC), Department of
Chemistry, University of Oslo for a stipend covering traveling and
living expenses in Norway.
tion to Si–H stretch (m7), the most intense in the IR spectra in agree-
Appendix A. Supplementary material
ment with the calculations (Tables 2 and 3). They are assigned to
m18 (FSiH bending) of the a-conformer, whereas the corresponding
e-conformer band is found at 845 cmꢀ1 in the vapor. Strong vapor
bands at 835 cmꢀ1 are attributed to Q-branches for the e and a-
Supplementary data associated with this article can be found, in
conformers of the mixed stretching and bending modes, m43
.
References
The IR vapor bands at 845 ( 18) and 808 (
m
m
19) cmꢀ1 and the cor-
[1] I. Arnason, G.K. Thorarinsson, E. Matern, Z. Anorg. Allg. Chem. 626 (2000) 853.
[2] I. Arnason, A. Kvaran, A. Bodi, Int. J. Quant. Chem. 106 (2006) 1975.
[3] F. Freeman, C. Fang, B.A. Shainyan, Int. J. Quant. Chem. 100 (2004) 720.
[4] I. Arnason, A. Kvaran, S. Jonsdottir, P.I. Gudnason, H. Oberhammer, J. Org.
Chem. 67 (2002) 161.
[5] I. Arnason, H. Oberhammer, J. Phys. Chem. 107 (2003) 243.
[6] I. Arnason, A. Kvaran, S. Jonsdottir, P.I. Gudnason, H. Oberhammer, J. Org.
Chem. 67 (2002) 3827.
[7] R. Bjornsson, I. Arnason, Phys. Chem. Chem. Phys. 11 (2009) 8689.
[8] A. Bodi, R. Bjornsson, J. Mol. Struct. 978 (2010) 14.
[9] A.J. Weldon, G.S. Tschumper, Int. J. Quant. Chem. 107 (2007) 2261.
[10] L.B. Favero, B. Velino, W. Caminati, I. Arnason, A. Kvaran, J. Phys. Chem. A110
(2006) 995.
responding Raman bands have 55 and 50 % contribution from Si–F
stretch, for the e- and a-conformers, respectively, but they are
weaker and less characteristic than the Si–Cl stretching bands in
1-chloro-1-silacyclohexane [24]. Both of these modes are mixed
with F–Si–H bend. In fluorocyclohexane the C–F stretches of the
e and a conformers are also mixed with various bending modes,
but they appear widely separated at 1065 and 954 cmꢀ1 in the va-
por [18,20] (at 1054 and 940 cmꢀ1 in the Raman spectra). It is well
known that in chloro- and bromocyclohexanes the C–X stretch is at
a higher wavenumber in the e than in the a conformer [22,23].
Two Raman bands are observed at 659 and 630 cmꢀ1, and
according to PED they are more than 70% localized to the symmet-
ric C–Si–C stretches of the e and a-conformers, respectively. Both of
these bands are highly polarized, they are among the most intense
in the Raman spectra (Tables 2 and 3 and Fig. 3), they are very
weak in IR, but well suited for the determination of DconfH(e ꢀ a).
They were employed in Fig. 6 and in the earlier studies [11].
[11] A. Bodi, A. Kvaran, S. Jonsdottir, E. Antonsson, S.Ó. Wallevik, I. Arnason, A.V.
Belyakov, A.A. Baskakov, M. Hölbling, H. Oberhammer, Organometallics 26
(2007) 6544.
[12] F.A. Miller, B.M. Harney, Appl. Spectrosc. 24 (1970) 291.
[13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc.,
Wallingford, CT, 2009.
[14] L.A. Curtiss, K. Ragavachari, P.G. Redfern, V. Rasslov, J.A. Pople, J. Chem. Phys.
109 (1998) 7764.
[15] G.O. Sørensen, VIBROT, Department of Chemistry, University of Copenhagen,
Copenhagen, Denmark.
[16] D. Michalska, R. Wysokinski, Chem. Phys. Lett. 403 (2005) 211.
[17] A.I. Fishman, W.A. Herrebout, B.J. van der Veken, J. Phys. Chem. A 106 (2002)
4536.
[18] J.R. Durig, R.M. Ward, K.G. Nelson, T.K. Gounev, J. Mol. Struct. 976 (2010) 150.
[19] J.R. Durig, C. Zheng, A.M. El Defrawy, R.M. Ward, T.K. Gounev, K. Ravindranath,
N.R. Rao, J. Raman Spectrosc. 40 (2009) 197.
Below 630 cmꢀ1 three overlapping e and a-modes 615 (
46) and 353 cmꢀ1
m24 and 25) were observed. The remaining IR
m45), 366
(m
(
m
and Raman bands interpreted as fundamentals have been assigned
as separate e or a-fundamentals. Exceptions are the bands around
170 cmꢀ1, tentatively interpreted as combination bands. The Ra-
man band at 395 cmꢀ1 attributed to m24 A0 of the a conformer
was combined with the e mode m25 at 311 cmꢀ1 to give DconfH (
e ꢀ a).
The average relative deviations between the observed and cal-
culated (anharmonic), unscaled modes give 1.16% for the e-con-
former and 0.92% for the a-conformer. The largest contributions
to the deviations for both conformers are given by the four modes
situated below 800 cmꢀ1
Tables 2 and 3.
: m22, m27, m44 and m47 as is apparent from
[20] S.D. Christian, J. Grundnes, P. Klaeboe, E. Tørneng, T. Woldbaek, Acta Chem.
Scand. A34 (1980) 391 (and earlier papers).
[21] P. Klaeboe, Acta Chem. Scand. 23 (1969) 2641.
[22] T. Woldbaek, Acta Chem. Scand. A36 (1982) 641.
Acknowledgements
[23] P. Klaeboe, Vibr. Spectrosc. 9 (1995) 3.
[24] V. Aleksa, G.A. Guirgis, A. Horn, P. Klaeboe, R.J. Liberatore, C.J. Nielsen, Vibr.
Spectrosc., submitted for publication.
The authors are grateful to Dr. Niels Højmark Andersen for his
valuable assistance in installing the low temperature Raman
attachment. Valdemaras Aleksa is grateful to the Centre for