Communications
Table 6: Interesting chemoselectivity in palladium-catalyzed CÀN bond
Keywords: amination · chemoselectivity · palladium ·
phosphines
.
formation.
[
1] a)J. F. Hartwig in Handbook on Organopalladium Chemistry for
Organic Synthesis (Ed.: E. Negishi), Wiley-Interscience, New
York, 2002, p. 1051; b)L. Jiang, S. L. Buchwald in Metal-
Catalyzed Cross-Coupling Reactions (Eds.: A. de Meijere, F.
Diederich), 2nd ed., Wiley-VCH, Weinheim, 2004, p. 699.
2] a)D.-Y. Lee, J. F. Hartwig, Org. Lett. 2005, 7, 1169; b)M. W.
Hooper, M. Utsunomiya, J. F. Hartwig, J. Org. Chem. 2003, 68,
Product
Yield
%]
Product
Yield
[%]
[
[
7
6
2
7
94
88
3
861; c)S. Harkal, F. Rataboul, A. Zapf, C. Fuhrmann, T.
Riermeier, A. Monsees, M. Beller, Adv. Synth. Catal. 2004, 346,
1
1
742; d)M. V. Nandakumar, J. G. Verkade, Angew. Chem. 2005,
17, 5040; Angew. Chem. Int. Ed. 2005, 44, 3115; e)M. S. Viciu,
R. M. Kissling, E. D. Stevens, S. P. Nolan, Org. Lett. 2002, 4,
229.
2
[
[
3] J. P. Wolfe, H. Tomori, J. Yin, J. Sadighi, S. L. Buchwald, J. Org.
Chem. 2000, 65, 1158.
4] S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald,
Angew. Chem. 2004, 116, 1907; Angew. Chem. Int. Ed. 2004, 43,
1
871.
5] A. V. Vorogushin, X. Huang, S. L. Buchwald, J. Am. Chem. Soc.
005, 127, 8146.
of chemoselectivity in a metal-catalyzed CÀN bond-forming
[
[
process. For example, we have previously shown with Cu
catalysts that aminopyrazoles react preferentially at the
pyrazole ÀNH group, thus representing complementarity
2
6] a)X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Klapars, S. L.
Buchwald, J. Am. Chem. Soc. 2003, 125, 6653; b)E. R. Strieter,
D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125,
13978.
7] E. R. Strieter, S. L. Buchwald, Angew. Chem. 2006, 118, 939;
Angew. Chem. Int. Ed. 2006, 45, 925.
8] a)F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116,
[
19]
between the Pd- and Cu-based methods. Finally, for the
first time a free (H)N-bromopyrazole can be successfully
aminated, in this case with aniline as shown.
[
[
[
In conclusion, we have developed highly reactive catalysts
based on palladium and dialkylbiarylphosphino ligands,
particularly 1, 3, or 4. These provide unprecedented reactivity
and selectivity in CÀN bond-forming processes. The bulky
5
969; b)J. F. Hartwig, F. Paul, J. Am. Chem. Soc. 1995, 117, 5373.
9] For other studies with aryl chlorides, see: a)M. Portnoy, D.
Milstein, Organometallics 1993, 12, 1665; b)A. F. Littke, G. C.
Fu, Angew. Chem. 2002, 114, 4350; Angew. Chem. Int. Ed. 2002,
41, 4176.
monophosphine catalyst system Pd/1 was effective for the
reaction of aryl/heteroaryl halides bearing primary amides
and 2-aminoheterocycles. Also, the more sterically encum-
bered catalyst systems based on Pd and ligands 3 or 4 were
found to be more proficient for the arylation of 2-amino-
heterocycles and weakly basic HN heterocycles: pyrazoles,
indazole, benzimidazole, and imidazole. The chemoselectivity
of these catalysts was explored and the rough order of
reactivity for amines follows the general trend: aryl amines @
primary and secondary aliphatic amines > 2-aminoheteroar-
omatics > primary amides ꢀ HN heterocycles. We hypothe-
size that the efficacy of palladium catalysts based on ligands 1,
[
10] E. Galardon, S. Ramdeehul, J. M. Brown, A. Cowley, K. K. Hii,
A. Jutand, Angew. Chem. 2002, 114, 1838; Angew. Chem. Int. Ed.
2
002, 41, 1760.
11] Q. Shen, S. Shekhar, J. P. Stambuli, J. F. Hartwig, Angew. Chem.
005, 117, 1395; Angew. Chem. Int. Ed. 2005, 44, 1371.
[
[
2
12] For the use of LiN(TMS) to enhance the substrate scope, see:
2
M. C. Harris, X. Huang, S. L. Buchwald, Org. Lett. 2002, 4, 2885.
[13] J. Yin, M. M. Zhao, M. A. Huffman, J. M. McNamara, Org. Lett.
002, 4, 3481.
2
[
14] T. H. M. Jonckers, B. U. W. Maes, G. L. F. Lemiere, R. Dom-
misse, Tetrahedron 2001, 57, 7027.
[
15] To date, 2-aminobenzothiazole and 2-aminothiazole could not
be N-arylated by using Pd/3 or other monophosphine catalyst
systems; these amino heterocycles inhibit the normally success-
ful coupling of simple aryl halides and aniline, thus indicating
their roles as catalyst poisons.
16] a)G. Mann, J. F. Hartwig, M. S. Driver, C. Fernandez-Rivas, J.
Am. Chem. Soc. 1998, 120, 827; b)J. F. Hartwig, M. Kawatsura,
S. I. Hauck, K. H. Shaughness, L. M. Alcazar-Roman, J. Org.
Chem. 1999, 64, 5575; c)D. W. Old, M. C. Harris, S. L. Buch-
wald, Org. Lett. 2000, 2, 1403.
3, or 4 is attributed to a combination of factors: 1)A
maximization of the amount of L Pd intermediates, thus
1
speeding the desired catalytic process relative to different
modes of catalyst decomposition; 2)providing quasi-stable
[
[
L Pd], [L Pd(Ar)X], and [L Pd(Ar)amido] intermediates
1 1 1
because the size of these complexes slows bimolecular
decomposition processes and because of stabilizing Pd/arene
interactions; 3)providing [L 1Pd(Ar)amido] intermediates
with especially sterically demanding ligand L facilitates the
[17] Pyrrole: K = 23.0 (DMSO); indole: K = 20.95 (DMSO); pyra-
1
a
a
rate of reductive elimination in forming the product. Further,
this study demonstrates that monodentate ligands are viable
alternatives to and sometimes superior to chelating ligands in
Pd-catalyzed CÀN bond-forming processes.
zole: K
= 19.8 (DMSO); see: F. G. Bordwell, Acc. Chem. Res.
a
1988, 21, 456.
[
18] a)J. F. Hartwig, S. Richards, D. Baranano, F. Paul, J. Am. Chem.
Soc. 1996, 118, 3626; b)M. S. Driver, J. F. Hartwig, J. Am. Chem.
Soc. 1997, 119, 8232; c)A. H. Roy, J. F. Hartwig, J. Am. Chem.
Soc. 2001, 123, 1232.
Received: April 24, 2006
Published online: September 6, 2006
[19] J. C. Antilla, J. M. Baskin, T. E. Barder, S. L. Buchwald, J. Org.
Chem. 2004, 69, 5578.
6
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 6523 –6527