ChemCatChem
10.1002/cctc.201902099
COMMUNICATION
12
40
93
465
a
Reaction conditions: Aryl halide (0.1 mmol), arylboronic acid (1.2 mmol), K
2
CO
3
(0.3 mmol) (entries 1-8), and Aryl halide (0.1 mmol), Phenyltin
O:EtOH (1:1, v/v) and refluxed under N
2
compound (1.2 mmol), K
under 80 °C. Yields were determined by HPLC.
3
PO (0.3 mmol) (entries 9-12) and Pd NPs (0.005 µmol) were mixed in 1 mL H
4
2
b
It has been reported that NPs prepared using dendritic
architectures and surface capping ligands may show better
stability, but their catalytic activity is low.[10] This is attributed to
their low surface accessibility while most of the surface is covered
by organic supports. Also, employing Pd@GFP preparation, the
particle size was dictated by the structure of Pd4 due to the
structure of Pd4 peptide fused to GFPuv protein. Regarding to the
catalytic activity, Pd@GFP showed slightly higher catalytic activity
Acknowledgements
This work was supported by the University of Arkansas through
the startup funds to MHB, Arkansas Bioscience Institute and the
Ralph E. Martin Department of Chemical Engineering.
Keywords: Palladium nanoparticles • Peptides • Bio-templated
synthesis • Heterogenous catalysis • Coupling reactions.
3
-1
(
TOF = 3.3 × 10 h ) comparing to the Pd NPs prepared using
chemically synthesized Pd4 peptides.[3a, 11] This shows that the
surface accessibility and catalytic activity of Pd NPs prepared
through recombinant approach were not compromised. In other
words, a recombinant approach to provide Pd4 or a similar
construct appears to be attractive from both a scientific and
economic standpoint.
To conclude, a facile aqueous solution phase NP synthesis
method was exploited in a heterogeneous biological protein
environment. Pd@GFP catalyst was utilized for Suzuki-Miyaura
and Stille coupling reactions in green solvents. The catalyst was
more active compared to chemically synthesized peptide-
templated Pd NPs as exhibits higher catalytic activity with very
good stability (5 cycles). Also, Pd@GFP was successfully used
for the preparation of an anti-cancer drug (Tykerb®) precursor.
Pd@GFP not only extends the application of peptide-templated
NPs, but also provides a cost-effective approach to design
heterogeneous catalysts. This catalyst resulted in a three order of
magnitude decrease in cost due to elimination of purification steps.
[
1]
a) W. Fu, Y. Cao, Q. Feng, W. R. Smith, P. Dong, M. Ye, J. Shen,
Nanoscale 2019, 11, 1379-1385; b) H. Huang, H. Jia, Z. Liu, P. Gao, J.
Zhao, Z. Luo, J. Yang, J. Zeng, Angew. Chem. Int. Ed. 2017, 56, 3594-
3598; c) X. Liu, S. Gao, P. Yang, B. Wang, J. Z. Ou, Z. Liu, Y. Wang,
Appl. Mater. Today 2018, 13, 158-165.
[2]
3]
a) I. P. Beletskaya, F. Alonso, V. Tyurin, Coord. Chem. Rev. 2019, 385,
137-173; b) L. C. Campeau, N. Hazari, Organometallics 2019, 38, 3-35.
[
a) N. M. Bedford, H. Ramezani-Dakhel, J. M. Slocik, B. D. Briggs, Y. Ren,
A. I. Frenkel, V. Petkov, H. Heinz, R. R. Naik, M. R. Knecht, ACS Nano
2015, 9, 5082-5092; b) Y. Xia, K. D. Gilroy, H. C. Peng, X. Xia, Angew.
Chem. Int. Ed. 2017, 56, 60-95; c) B. Karimi, H. Barzegar, H. Vali, Chem.
Commun. 2018, 54, 7155-7158; d) W. Wang, C. F. Anderson, Z. Wang,
W. Wu, H. Cui, C. J. Liu, Chem. Sci. 2017, 8, 3310-3324.
[4]
a) X. Liu, D. Gregurec, J. Irigoyen, A. Martinez, S. Moya, R. Ciganda, P.
Hermange, J. Ruiz, D. Astruc, Nat. Commun. 2016, 7, 13152; b) A.
Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I.
Chakraborty, A. Masood, M. F. Casula, A. Kostopoulou, E. Oh, K.
Susumu, M. H. Stewart, I. L. Medintz, E. Stratakis, W. J. Parak, A. G.
Kanaras, Chem. Rev. 2019, 119, 4819-4880.
[
[
5]
6]
a) B. Li, N. You, Y. Liang, Q. Zhang, W. Zhang, M. Chen, X. Pang, Energy
Environ. Mater. 2019, 2, 38-54; b) N. B. Debata, D. Tripathy, H. S. Sahoo,
Coord. Chem. Rev. 2019, 387, 273-298; c) L. Qiu, R. McCaffrey, Y. Jin,
Y. Gong, Y. Hu, H. Sun, W. Park, W. Zhang, Chem. Sci. 2018, 9, 676-
680.
a) N. M. Bedford, A. R. Showalter, T. J. Woehl, Z. E. Hughes, S. Lee, B.
Reinhart, S. P. Ertem, E. B. Coughlin, Y. Ren, T. R. Walsh, B. A. Bunker,
ACS Nano 2016, 10, 8645-8659; b) C. J. Munro, M. R. Knecht, Curr.
Opin. Green Sustain. Chem. 2018, 12, 63-68; c) T. R. Walsh, M. R.
Knecht, Chem. Rev. 2017, 117, 12641-12704; d) Y. Cheng, J. Zheng, C.
Tian, Y. He, C. Zhang, Q. Tan, G. An, G. Li, Asian J. Org. Chem. 2019,
8, 526-531.
[
7]
a) I. Mosleh, M. Benamara, L. Greenlee, M. H. Beyzavi, R. Beitle, Mater.
Lett. 2019, 252, 68-71; b) R. Tejada-Vaprio, I. Mosleh, Mosleh, R. P.
Mukherjee, H, Aljewari, M. Fruchtl, A. Elmasheiti, N. Bedford, L.
Greenlee, M. H. Beyzavi, R. Beitle, Biotechnol Prog. 2020, 36, e2956.
D. Han, Z. Bao, H. Xing, Y. Yang, Q. Ren, Z. Zhang, Nanoscale 2017, 9,
[
[
8]
9]
6026-6032.
a) S. Mahboobi, A. Sellmer, M. Winkler, E. Eichhorn, H. Pongratz, T.
Ciossek, T. Baer, T. Maier, T. Beckers, J. Med. Chem. 2010, 53, 8546-
8555; b) G. Erickson, J. Guo, M. McClure, M. Mitchell, M.-C. Salaun, A.
Whitehead, Tetrahedron Lett. 2014, 55, 6007-6010.
Figure 4. (a) TEM image, and (b) particle size distribution of Pd@GFP catalyst
after five cycles for Suzuki-Miyaura coupling. (c) TEM image, and (d) particle
size distribution of Pd@GFP catalyst after five cycles for Stille coupling.
[10] a) B. A. Rozenberg, R. Tenne, Prog. Polym. Sci. 2008, 33, 40-112; b) S.
Chatterjee, S. K. Bhattacharya, ACS Omega 2018, 3, 12905-12913; c)
A. K. Diallo, C. Ornelas, L. Salmon, J. R. Aranzaes, D. Astruc, Angew.
Chem. Int. Ed. 2007, 46, 8644-8648.
[
11] R. Coppage, J. M. Slocik, H. Ramezani-Dakhel, N. M. Bedford, H. Heinz,
Supporting Information (see footnote on the first page of this article):
R. R. Naik, M. R. Knecht, J. Am. Chem. Soc. 2013, 135, 11048-11054.
.
Full experimental details and characterization data (NMR and
Mass spectra) for compounds.
4
This article is protected by copyright. All rights reserved.