1
Dynamic H NMR Study of the Barrier to
than in comparable amides because conjugation between the
nitrogen lone pair and the carbonyl group is reduced by the
same but competing effects between the oxygen lone pairs and
the same carbonyl group. However, one of the oxygen lone pairs
can be donated into the carbonyl π system, and thus, it can
partially compensate the loss of π conjugation with the nitrogen
lone pair when C-N bond rotation takes place.
Rotation about the C-N Bond in Primary
Carbamates and Its Solvent Dependence
,
†
Ali Reza Modarresi-Alam,* Parisa Najafi,
Mohsen Rostamizadeh, Hossein Keykha,
Hamid-Reza Bijanzadeh, and Erich Kleinpeter
†
‡
§
Carbamates are of particular interest due to their usefulness
Department of Chemistry, UniVersity of Sistan & Baluchestan,
Zahedan, Iran, Department of Chemistry, Tarbiat Modarress
UniVersity, P. O. Box 14115-175, Tehran, Iran, and
Department of Chemistry, UniVersity of Potsdam,
2
2-24
23-26
in various industries
fungicides and pesticides), in the pharmaceuticals industry
as drug intermediates, and in the polymer industry2
synthesis of polyurethane and also in peptide syntheses. In
addition, among the various amine-protecting groups, carbam-
ates are commonly used due to their chemical stability toward
acids, bases, and hydrogenation. In particular, the pharmaco-
logical activity and the importance of syn and anti rotamers of
carbamates in their biological acitivities motivated detailed
investigations of the energetic properties of these systems as
as agrochemicals
(herbicides,
23,24,27
3,24
in the
P. O. Box 60 15 53, D-14415 Potsdam, Germany
27
2
8
ReceiVed June 23, 2006
1
,12,15,29
conformational switches in molecular devices.
(
6) Wibreg, K. B.; Breneman, C. M. J. Am. Chem. Soc. 1992, 114, 831-
40.
7) Wiberg, K. B.; Rablen, P. R.; Rush, D. J.; Keith, T. A. J. Am. Chem.
Soc. 1995, 117, 4261-4270.
8) Lustig, E.; Benson, W. R.; Duy, N. J. Org. Chem. 1967, 32, 851-
52.
8
(
(
8
1
4
1
(9) Tanny, S. R.; Pickering, M.; Springer, C. S., Jr. J. Am. Chem. Soc.
973, 95, 6227-6232.
(10) Pirkle, W. H.; Simmons, K. A.; Boeder, C. W. J. Org. Chem. 1979,
4, 4891-4896.
11) Kornberg, N.; Kost, D. J. Chem. Soc., Perkin Trans. 2 1979, 1661-
664.
12) Woolley, G. A.; Jaikaran, A. S. I.; Zhang, Z.; Peng, S. J. Am. Chem.
Soc. 1995, 117, 4448-4454.
13) Avenoza, A.; Busto, J. H.; Corzana, F.; Jimenez-Oses, G.; Peregrina,
J. M. Tetrahedron 2003, 59, 5713-5718.
14) Yamagami, C.; Takao, N.; Takeuchi, Y. Aust. J. Chem. 1986, 39,
(
(
(
(
1
The dynamic H NMR study of some primary carbamates
457-463.
in the solvents CDCl
K is reported. The free energies of activation, thus obtained
3
and CD
3
COCD
3
between 183 and 298
(15) Cox, C.; Lectka, T. J. Org. Chem. 1998, 63, 2426-2427.
(
(
(
16) Rablen, P. R. J. Org. Chem. 2000, 65, 7930-7937.
17) Basso, E. A.; Pontes, R. M. THEOCHEM 2002, 594, 199-206.
18) Marcovici-Mizrahi, D.; Gottlieb, H. E.; Marks, V.; Nudelman, A.
-
1
(12.4 to 14.3 kcal mol ), were attributed to the conforma-
tional isomerization about the N-C bond. These barriers to
rotation show solvent dependence in contrast to the tertiary
analogues and are lower in free energy by ca. 2-3 kcal
J. Org. Chem. 1996, 61, 8402-8406.
(19) Smith, B. D.; Goodenough-Lashua, D. M.; D’Souza, C. J. E.; Norton,
K. J.; Schmidt, L. M.; Tung, J. C. Tetrahedron lett. 2004, 45, 2747-2749.
(20) Moraczewski, A. L.; Banaszynski, L. A.; From, A. M.; White, C.
E.; Smith, B. D. J. Org. Chem. 1998, 63, 7258-7262.
-
1
mol .
(21) Deetz, M. J.; Forbes, C. C.; Jonas, M.; Malerich, J. P.; Smith, B.
D.; Wiest, O. J. Org. Chem. 2002, 67, 3949-3952.
(
22) Mindl, J.; Hrab ´ı k, O.; St eˇ rba, V.; Kav a´ lek, J. Collect. Czech. Chem.
The barrier to rotation about partial C-N double bonds in
Commun. 2000, 65, 1262-1272.
amides and carbamates (urethanes) has been the subject of
(23) Dibenedetto, A.; Aresta, M.; Fragale, C.; Narracci, M. Green Chem.
2002, 4, 439-443.
substantial investigation.1
-21
The free energies of activation in
(24) Gupta, S. P.; Shivarkar, A. B.; Chaudhari, R. V. J. Chem. Soc.,
-1
carbamates (urethanes) are somewhat smaller (2-4 kcal mol )
Chem. Commun. 2001, 2620-2621.
(25) Motolcsy, G.; Nadasy, M.; Andriska, V. Pesticide Chemistry;
†
‡
§
Academiai Kiado: Budapest, 1988; p 90.
University of Sistan & Baluchestan.
Tarbiat Modarress University.
University of Potsdam.
(26) Thompson, A. Pesticide Outlook 2002, 13, 84-86.
(27) Lawrence, M.; Klein, D. L.; Nemotho, P. Bioorg. Med. Chem. Lett.
1997, 7, 157-162.
(28) Greene, W. T.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis, 2nd ed.; Wiley: New York, 1991; pp 327 and 403.
(29) Takayama, H.; Shirakawa, S.; Kitajima, M.; Aimi, N.; Yamaguchi,
K.; Hanasaki, Y.; Ide, T.; Katsuura, K.; Fujiwara, M.; Ijichi, K.; Konno,
K.; Sigeta, S.; Yokota, T.; Baba, M. Bioorg. Med. Chem. Lett. 1996, 6,
1993-1996.
(
1) Dugave, C.; Demange, L. Chem. ReV. 2003, 103, 2475-2532.
(2) Kaur, S.; Eberhardt, E. S.; Doucette, A.; Chase, A.; Dalby, C. J.
Org. Chem. 2002, 67, 3937-3940.
3) Garratt, P. J.; Thom, S. N.; Wrigglesworth, R. Tetrahedron 1994,
(
5
0, 12211-12218.
4) Kleinpeter, E. J. Mol. Struct. 1996, 380, 139-156.
10.1021/jo061301f CCC: $37.00 © 2007 American Chemical Society
2
208
J. Org. Chem. 2007, 72, 2208-2211
Published on Web 02/20/2007