10.1002/anie.201812094
Angewandte Chemie International Edition
COMMUNICATION
[7]
[8]
M. J. Carbone, M. Vanhalle, B. Goderis, P. V. Puyvelde, J. Polym. Eng.
2015, 35, 169.
polymers in various solvents revealed that the topochemically
formed polymers are less soluble than the latter (Supporting
Information Section S8). This difference in solubility may be
attributable to the stronger interaction between the ordered fibrils
in the case of oligomers formed in the TAAC reaction.
G. B. Perea, C. Riekel, G. V. Guinea, R. Madurga, R. Daza, M.
Burghammer, C. Hayashi, M. Elices, G. R. Plaza, J. Pérez-Rigueiro, Sci.
Rep. 2013, 3, DOI 10.1038/srep03061.
[9]
V. Tereshko, X. Vidal, M. Goodman, J. A. Subirana, Macromolecules
1995, 28, 264.
In conclusion, we have reported spontaneous evolution of
two polymerizable monomers into their respective 1D-polymers
having unprecedented cross-laminated topology. Two designed
peptides terminally modified with complimentary reacting motifs
(CRMs), viz. azide and alkyne, crystallize via head-to-tail
ordering of monomers with CRMs in ready-to-react orientation
forming parallel 1D-chain-like arrangement in each layer. These
layers stack in 3D such that each monomer having ‘x’ amide
bonds is H-bonded with ‘2x’ monomers arranged in criss-
crossed manner in adjacent layers. The crystals undergo
cycloaddition reaction at room temperature to corresponding
polypeptides in SCSC manner. As the monomers adopted the
criss-crossed hydrogen bonded packing, topotactically formed
polymers adopted hitherto unknown cross-laminated packing,
wherein each polymer chain having ‘x’ amino acids is H-bonded
to ‘2x’ polymer chains. As mechanical property of the polymer
depends upon the nature of packing of polymer chains, these
novel polyglycine-mimics with an interesting packing might find
applications akin to polyglycines. This is the first report of
spontaneous SCSC polymerization of peptide derivatives.
[10] a)B. Schulze, U. S. Schubert, Chem. Soc. Rev. 2014, 43, 2522; b) E.
Oueis, M. Jaspars, N. J. Westwood, J. H. Naismith, Angew. Chem. Int.
Ed. 2016, 55, 5842-5845; Angew. Chem. 2016, 128, 5936.
[11] a) A. Pathigoolla, R. G. Gonnade, K. M. Sureshan, Angew. Chem. Int.
Ed. 2012, 51, 4362; Angew. Chem. 2012, 124, 4438; b) A. Pathigoolla,
K. M. Sureshan, Angew. Chem. Int. Ed. 2013, 52, 8671;Angew. Chem.
2013, 125, 8833; c) A. Pathigoolla, K. M. Sureshan, Angew. Chem. Int.
Ed. 2014, 53, 9522; Angew. Chem. 2014, 126, 9676; d) B. P. Krishnan,
R. Rai, A. Asokan, K. M. Sureshan, J. Am. Chem. Soc. 2016, 138,
14824; e) B. P. Krishnan, K. M. Sureshan, J. Am. Chem. Soc. 2017,
139, 1584; f) R. Rai, B. P. Krishnan, K. M. Sureshan, Proc. Natl. Acad.
Sci. USA 2018, 115, 2896; g) R. Mohanrao, K. M. Sureshan, Angew.
Chem.
Int.
Ed.
10.1002/anie.201806451;
Angew.
Chem.
10.1002/ange.201806451.
[12] a) B. P. Krishnan, S. Ramakrishnan, K. M. Sureshan, Chem. Commun.
2013, 49, 1494; b) A. Ravi, K. M. Sureshan, Angew.Chem. Int. Ed.
2018, 57, 9362; Angew.Chem. 2018, 130, 9506.
[13] a) G. Wegner, Pure Appl. Chem. 1977, 49, 443;(b) Y. Maekawa, P. -J.
Lim, K. Saigo, M. Hasegawa, Macromolecules 1991, 24, 5752; c) A. V.
Soldatov, G. Roth, A. Dzyabchenko, D. Johnels, S. Lebedkin, C.
Meingast, B. Sundqvist, M. Haluska, H. Kuzmany, Science 2001, 293,
680; d) A. Matsumoto, S. Oshita, D. Fujioka, J. Am. Chem. Soc. 2002,
124, 13749; e) A. Sun, J. W. Lauher, N. S. Goroff, Science 2006, 312,
1030; f) Y. Xu, M. D. Smith, M. F. Geer, P. J. Pellechia, J. C. Brown, A.
C. Wibowo, L. S. Shimizu, J. Am. Chem. Soc. 2010, 132, 5334; g) T.
Itoh, T. Suzuki, T. Uno, M. Kubo, N. Tohnai, M. Miyata, Angew. Chem.
Int. Ed. 2011, 50, 2253; Angew. Chem. 2011, 123, 2301; h) K. Biradha,
R. Santra, Chem. Soc. Rev. 2013, 42, 950; i) S. Rondeau-Gagné, J. R.
Néabo, M. Desroches, J. Larouche, J. Brisson, J.-F. Morin, J. Am.
Chem. Soc. 2013, 135, 110; j) L. Dou, Y. Zheng, X. Shen, G. Wu, K.
Fields, W.-C. Hsu, H. Zhou, Y. Yang, F. Wudl, Science 2014, 343, 272;
k) L. Zhu, H. Tran, F. L. Beyer, S. D. Walck, X. Li, H. Ågren, K. L.
Killops, L. M. Campos, J. Am. Chem. Soc. 2014, 136, 13381; l) H. Jin,
C. N. Young, G. P. Halada, B. L. Phillips, N. S. Goroff, Angew. Chem.
Int. Ed. 2015, 54, 14690; Angew.Chem. 2015, 127, 14903; m) M.
Suzuki, J. F. K. Kotyk, S. I. Khan, Y. Rubin, J. Am. Chem. Soc. 2016,
138, 5939; n) R. S. Jordan, Y. L. Li, C.-W. Lin, R. D. McCurdy, J. B. Lin,
J. L. Brosmer, K. L. Marsh, S. I. Khan, K. N. Houk, R. B. Kaner, Y.
Rubin, J. Am. Chem. Soc. 2017, 139, 15878.
Acknowledgements
We thank Dr. Sujit K. Ghosh, IISER Pune, for supporting with
single crystal X-ray diffraction measurements and Prof. Prita
Pant, IIT Bombay, for supporting with the nanoindentation
studies. KMS thanks Department of Science and Technology,
India for a SwarnaJayanti Fellowship.
Conflict of interest
The authors declare no competing financial interest.
Keywords: single-crystal-to-single-crystal (SCSC) •
cycloaddition • polymerization • pseudopolyglycines • cross-
laminated
[14] a) P. Kissel, R. Erni, W. B. Schweizer, M. D. Rossell, B. T. King, T.
Bauer, S. Götzinger, A. D. Schlüter, J. Sakamoto, Nat. Chem. 2012, 4,
287; b) M. J. Kory, M. Wörle, T. Weber, P. Payamyar, S. W. van de Poll,
J. Dshemuchadse, N. Trapp, A. D. Schlüter, Nat. Chem. 2014, 6, 779;
c) R. Z. Lange, G. Hofer, T. Weber, A. D. Schlüter, J. Am. Chem. Soc.
2017, 139, 2053.
[1]
a) B. E. I. Ramakers, J. C. M. van Hest, D. W. P. M. Lowik, Chem. Soc.
Rev. 2014, 43, 2743.; b) E. De Santis, M. G. Ryadnov, Chem. Soc.
Rev. 2015, 44, 8288.c) I. W. Hamley, Chem. Rev. 2017, 117, 14015; d)
Z. Song, Z. Han, S. Lv, C. Chen, Li Chen, L. Yin, J. Cheng, Chem. Soc.
Rev. 2017, 46, 6570-6599; e) B. O. Okesola, A. Mata, Chem. Soc. Rev.
2018, 47, 3721.
[15] One of the essential requirements for the topochemical reactions is the
proximity of reacting partners in the crystal lattice. G. M. J. Schmidt,
Pure Appl. Chem. 1971, 27, 647.
[2]
a) F. H. C. Crick, A. Rich, Nature 1955, 176, 780b) G. N.
Ramachandran, V. Sasisekharan, C. Ramakrishnan, Biochim. Biophys.
Acta. 1966, 112, 168c) F. Colonna-Cesari, S. Premilat, B. Lotz, J. Mol.
Biol. 1974, 87, 181. d) H. Nakamura, N. Go, Int. J. Pept. Protein Res.
1985, 25, 232. e) A. V. Kajava, Acta Cryst. 1999, D55, 436.
K. Yamauchi, S. Kuroki, I. Ando, J. Mol. Struct. 2002, 602-603, 171.
S. Ohnishi, H. Kamikubo, M. Onitsuka, M. Kataoka, D. Shortle, J. Am.
Chem. Soc. 2006, 128, 16338.
[16] a) A. Usanmaz, N. Baytar, J. Macromol. Sci. Part A-Pure and Appl.
Chem. 1998, 35, 161; b) C. Wilhelm, S. A. Boyd, S. Chawda, F. W.
Fowler, N. S. Goroff, G. P. Halada, C. P. Grey, J. W. Lauher, L. Luo, C.
D. Martin, J. B. Parise, C. Tarabrella, J. A. Webb, J. Am. Chem. Soc.
2008, 130, 4415.
[3]
[4]
[17] a) Z. Li, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2009, 131, 634;
b) T. -J. Hsu, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2012, 134,
142; c) T. N. Hoheisel, S. Schrettl, R. Marty, T. K. Todorova, C.
Corminboeuf, A. Sienkiewicz, R. Scopelliti, W. B. Schweizer, H.
Frauenrath, Nat. Chem. 2013, 5, 327; d) M. Garai, R. Santra, K.
Biradha, Angew. Chem. Int. Ed. 2013, 52, 5548; Angew. Chem. 2013,
125, 5658; e) H. Jin, A. M. Plonka, J. B. Parise, N. S. Goroff,
CrystEngComm 2013, 15, 3106.
[5]
a) C. M. Kuskur, B. E. K. Swamy, H. Jayadevappa, H. J. Anal. Bioanal.
Tech. 2015, 6, DOI 10.4172/2155-9872.1000260;.b) B. R. L. Ferraz, F.
R. F. Leite, A. R. Malagutti, J. Solid State Electr. 2016, 20, 2509;c) J. G.
G. Manjunatha, J. Food Drug Anal. 2017, 26, 292..
[6]
W. Vojak, Glycine:biosynthesis, physiological functions and commercial
uses, (Eds.: G. Herlem, H. Boulhadour, A. Antoniou, F. T. Anzola, T.
Gharbi), Nova Science Publishers, Inc. New York, 2013, 33-59.
[18] a) T. Hoang, J. W. Lauher, F. W. Fowler, J. Am. Chem. Soc. 2002, 124,
10656; b) V. Ovcharenko, S. Fokin, E. Chubakova, G. Romanenko, A.
Bogomyakov, Z. Dobrokhotova, N. Lukzen, V. Morozov, M. Petrova, M.
This article is protected by copyright. All rights reserved.