Y. Zou et al. / Tetrahedron Letters 48 (2007) 4781–4784
4783
Table 1. Screening of ligands for asymmetric hydroformylationa
been achieved. However, low enantioselectivites (less
than 30% ee) were obtained for the hydroformylation
of styrene. Further ligand structure modifications are
currently undergoing to increase the enantioselectivity
and the reactivity.
CHO
Rh(acac)(CO)2 /ligand
*
OAc
OHC
+
OAc
OAc
eed (%)
CO/H2, toluene
Entry
Ligand
Conv.b (%)
b/lc
1
2
3
4
L1
L2
L3
L4
29
23
45
23
96/4
97/3
98/2
98/2
13(S)
71(S)
75(S)
16(S)
References and notes
´
1. For recent reviews, see: (a) Claver, C.; Dieguez, M.;
`
´
Pamies, O.; Castillon, S. Top. Organometall. Chem. 2006,
a Reactions were carried out under 10 atom of H2 and CO at 40 °C for
24 h. Substrate/Rh = 1000. L/Rh = 4:1.
´
`
18, 35; (b) Dieguez, M.; Pamies, O.; Claver, C. Tetra-
hedron: Asymmetry 2004, 15, 2113; (c) Agbossou, F.;
Carpentier, J.; Mortreux, A. Chem. Rev. 1995, 95, 2485;
(d) Gladiali, S.; Bayo¨n, J. C.; Claver, C. Tetrahedron:
Asymmetry 1995, 6, 1453; (e) Breit, B.; Seiche, W.
Synthesis 2001, 1; (f) Claver, C.; van Leeuwen, P. W. N.
M. In Rhodium Catalyzed Hydroformylation; Claven, C.,
van Leeuwen, P. W. N. M., Eds.; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 2000.
b Conversion was based on 1H NMR.
c Branched/linear ratio. Determined based on 1H NMR.
d Determined by GC analysis (Supelco’s Beta Dex 225). The absolute
configuration (S) was assigned by comparing the optical rotation of
the product with (S)-1-fomylethyl acetate.
Table 2. Asymmetric hydroformylation of vinyl acetate with Rh–L2
catalysta
2. (a) Babin, J. E.; Whiteker, G. T. Patent WO 9303839,
1992; (b) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J.
Am. Chem. Soc. 1993, 115, 7033; (c) Nozaki, K.; Sakai, N.;
Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.;
Takaya, H. J. Am. Chem. Soc. 1997, 119, 4413; (d)
Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.; Schwarz,
G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106; (e)
Dieguez, M.; Pamies, O.; Ruiz, A.; Castillon, S.; Claver,
C. Chem. Eur. J. 2001, 7, 3086; (f) Cobley, C. J.; Gardner,
K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.;
Zanotti-Gerosa, A.; Petersen, J. L.; Abboud, K. A. J. Org.
Chem. 2004, 69, 4031; (g) Clark, T. P.; Landis, C. R.;
Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc.
2005, 127, 5040; (h) Axtell, A. T.; Cobley, C. J.; Klosin, J.;
Whiteker, G. T.; Zanotti-Gerosa, A.; Abboud, K. A.
Angew. Chem., Int. Ed. 2005, 44, 5834; (i) Huang, J.;
Bunel, E.; Allgeier, A.; Tedrow, J.; Storz, T.; Preston, J.;
Correll, T.; Manley, D.; Soukup, T.; Jensen, R.; Syed, R.;
Moniz, G.; Larsen, R.; Martinelli, M.; Reider, P. Tetra-
hedron Lett. 2005, 46, 7831; (j) Yan, Y.; Zhang, X. J. Am.
Chem. Soc. 2006, 128, 7198.
CHO
Rh(acac)(CO)2 /ligand
*
OAc
OHC
+
OAc
OAc
CO/H2, toluene
Entry Ligand L/Rh T (°C) Time Conv. b/l
ee (%)
(h)
(%)
1
2
3
4
5
6
7
8
9
L2
L2
L2
L2
L2
L2
L2
L2
L3
L3
L3
L3
1:1
2:1
4:1
6:1
4:1
4:1
4:1
4:1
4:1
4:1
4:1
4:1
40
40
40
40
60
80
60
60
40
40
60
60
12
12
12
12
12
12
24
36
12
24
12
24
6
98/2 35(S)
98/2 69(S)
98/2 77(S)
98/2 77(S)
97/3 72(S)
98/2 56(S)
98/2 66(S)
98/2 41(S)
98/2 80(S)
98/2 75(S)
98/2 73(S)
98/2 69(S)
16
23
3
43
>99
80
98
9
10
11
12
45
69
98
3. Whiteker, G. T.; Briggs, J. R.; Babin, J. E.; Barner, B. A.
In Catalysis of Organic Reactions; Morrell, D. G., Ed.;
Marcel Dekker: New York, 2003; p 359.
a Reactions were carried out under 10 atom of H2 and CO. Substrate/
Rh = 1000.
4. Cobley, C. J.; Klosin, J.; Qin, C.; Whiteker, G. T. Org.
Lett. 2004, 6, 3277.
5. For recent reviews, see: (a) Brunel, J. M. Chem. Rev. 2005,
105, 857; (b) Kocovsky, P.; Vyskocyl, S.; Smrcina, M.
Chem. Rev. 2003, 103, 3213; (c) Chen, Y.; Yekta, S.;
Yudin, A. K. Chem. Rev. 2003, 103, 3155.
roformylation usually decreases rapidly with prolonged
reaction time due to product isomerization. This factor
was examined in detail with different reaction time rang-
ing from 12 h to 36 h. As shown in the table (Table 2,
entries 5 and 8), the enantioselectivity dropped from
72% ee (12 h) to only 41% ee (36 h), with an increased
conversion from 43% to 98%. Asymmetric hydroformy-
lation with ligand L3 was also investigated (Table 2, en-
tries 9–12). The best enantioselectivity (80% ee) was
achieved at 40 °C for 12 h, although the conversion
was only 9% (Table 2, entry 9). Elevated reaction tem-
perature and prolonged reaction time resulted in 98%
conversion with lower enantioselectivity (Table 2, entry
12).
´
`
6. Dieguez, M.; Pamies, O.; Claver, C. J. Org. Chem. 2005,
70, 3363.
7. (a) Anschutz, L.; Broeker, W.; Neher, R.; Ohnheiser, A.
¨
Chem. Ber. 1943, 76, 218; (b) Anschutz, L.; Marquardt,
¨
W. Chem. Ber. 1956, 89, 1119; (c) Billig, E.; Abatjoglou,
A. G.; Bryant, D. R. US. Patents 4,668,651 (1987) and
4,769,498 (1988); (d) Pastor, S. D.; Shum, S. P.; Rodeb-
augh, R. K.; Debellis, A. D.; Clarke, F. H. Helv. Chim.
Acta 1993, 76, 900.
8. (a) Cox, P. J.; Wang, W.; Snieckus, V. Tetrahedron Lett.
1992, 33, 2253; (b) Simonsen, K. B.; Gothelf, K. V.;
Jorgenson, K. A. J. Org. Chem. 1998, 63, 7536.
9. General procedure for synthesis of ligands L1–L4. To a
solution of 3b (438 mg, 1 mmol) in THF (15 mL) at 0 °C
was added dropwise n-BuLi (3 mmol, 1.2 mL of 2.5 M
hexane solution). The reaction mixture was allowed to
warm to room temperature and stirred for 30 min to give a
deep red solution. The reaction mixture was then recooled
In conclusion, four structural related diphosphite
ligands L1–L4 have been synthesized from readily avail-
able starting materials. Their application in asymmetric
hydroformylation reactions of vinyl acetate has been
investigated. Moderate enantioselectivities (up to 80%
ee) and excellent regioselectivities (b/l up to 98/2) have