Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC04429E
COMMUNICATION
Journal Name
As an application the interaction of the fluorescent suggested the binding process is exothermic in nature (ESI†,
7
pentapeptide with only protein BSA was tested (Fig. 4). Our Section 5.12).The binding isotherm was fitted to a sigmoidal
aim was just to see whether in a protein microenvironment curve involving one binding site mode (Fig. 4D). The binding is
-1
5
the FRET photophysics is maintained by the pentapeptide or favoured enthalpically with binding constant (K) 1.1 X 10 M
not. The absorption increases as a solution of the probe and free energy of binding (∆G) -6.9 kcal/mol both of which
peptide 3 was titrated with BSA (Fig. 4A). The overlapping of are found to be closer to the experimental values (ESI†,
7
emission spectra of BSA protein and absorbance of Section 5.11 ).
pentapeptide
3
indicated that there might be a possibility of
In conclusion, we successfully introduced a FRET relay
energy transfer from Trp unit of BSA to pyrene unit of system peptide with a β-sheet inducing turn mimetic o,m-
o,m-Ar
pentapeptide
3
(ESI†, Section 5.6, Fig. S18a). Thus, as we triazolyl aromatic scaffold (
TAA) which acts as FRET origin.
excited at absorption of BSA (280 nm) we observed a decrease The FRET enegy from the scaffold then transferred to the
in BSA emission intensity as well as an increase in pyrene interim acceptor, TPy and then to terminal acceptor, TPer
emission intensity indicating a visual FRET from BSA protein to which ultimately emits fluorescence light. The FRET relay
pentapeptide
3 (Fig. 4B). Time resolved fluorescence study also peptide was also able to interact with BSA leading to the same
supported this FRET phenomenon (ESI†, Section 5.7). The FRET process. This newly designed fluorescent peptide might
4
association constant was found to be 5.3 x 10 M with free find wider application in chemical biology.
-1
energy of binding (∆G) -6.5 kcal/mol (ESI†, Section 5.8).
The authors thank the Department of Biotechnology (DBT:
BT/PR16620/NER/95/223/2015), New Delhi, Govt. of India for generous funding.
Notes and references
1
(a) T. Forster, Naturwissenschaften, 1946, 6, 166. (b) J. R. Lakowicz,
Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum
Publishers: New York, 1999. (c) M. Yamaguchi, E. Ohta, T. Muto, T.
Watanabe, T. Hohsaka, Y. Yamazaki, H. Kamikubo, M. Kataoka,
Biophys. Rev., 2018, 10, 145.
2
3
(a) K. Okamoto, Y. Sako, Curr. Opin. Str. Biol., 2017, 46, 16. (b) L.
Stryer, R. P. Haugland, PNAS 1967, 58, 719.
(a) Y. Blum, R. D. Fritz, H. Ryu, O. Pertz, Methods Mol. Biol., 2017,
1
2
487, 203. (b) M. Mohsin, A. Ahmad, M. Iqbal, Biotechnol. Lett.
015, 37, 1919.
4
(a) K. E. Sapsford, L. Berti, I. L. Menditz, Angew. Chem., Int. Ed., 2006,
, 4562. (b) M. D. E. Jepsen, S. M. Sparvath, T. B. Nielsen, A. H.
Langvad, G. Grossi, K. V. Gothelf, E. S. Andersen, Nature Comm.,
018, , 1. (c) S. Ripp, P. Turunen, E. D. Minot, A. E. Rowan, K. G.
Blank, ACS Omega, 2018, , 4148.
4
5
2
9
3
5
6
(a) Á. Fábián, G. Horváth, G. Vámosi, G. Vereb, J. Szöllősi, Cytometry
Part A, 2013, 83A, 672 and references therein. (d) D. Navarathne, Y.
Ner, J. G. Grote, G. A. Sotzing, Chem. Commun., 2011, 47, 12125. (c)
E. Galperin, V. V. Verkhusha, A. Sorkin, Nat. Methods 2004, 1, 209.
(a) S. Kawahara, T. Uchimaru, S. Murata, Chem. Commun., 1999,
Figure 4. Titration of probe pentapeptide
3 with increasing amount of
BSA (a) UV visible and (b) fluorescence emission spectra (λex = 280 nm;
peptide = 5 µM in 20 mM phosphate buffer, pH 7.0, rt]. (C) Docking
pose of pentapeptide
3 in presence of BSA showing interaction with
5
63. (b) A. K. Tong, S. Jockusch, Z. Li, H.-R. Zhu, D. L. Akins, N. J.Turro,
the hydrophobic pocket of BSA. (D) Plot from isothermal titration
calorimetry.
J. Ju, J. Am. Chem. Soc., 2001, 123, 12923. (c) Q.-H. Xu, S. Wang, D.
Korystov, A. Mikhailovsky, G. C. Bazan, D. Moses, A. J. Heeger, Proc.
Natl. Acad. Sci. 2005, 102, 530. (d) Á. Fábián, G. Horváth, G.
Vámosi, G. Vereb, J. Szöllősi, Cytometry A. 2013, 83A, 375.
To have much information on the interaction a docking
7
(a) S. S.Bag, A. Yashmeen, Bioorg. Med. Chem. Lett., 2017, 27, 5387.
1
3
calculations was carried out using Autodock4 (Fig. 4C).
Docking pose clearly indicated the close proximity of TPy of
probe and Trp of BSA and hence the possibility of occurrence
of FRET process was supported. The probe peptide was
(
b) S. S.Bag, S. Jana, M. K. Pradhan, S. Pal, RSC Adv., 2016,
(c) S. S.Bag, S. Jana, A. Yashmeen, S. De, Chem. Commun., 2015, 51
242;
6, 72654.
,
5
3
8
9
M. J. Krysmann, V. Castelletto, A. Kelarakis, I. W. Hamley, R. A. Hule
and D. J. Pochan, Biochemistry, 2008, 47, 4597.
(a) Y. H. Chen and J. T. Yang, Biochem. Biophys. Res. Commun., 1971,
3
located in the vicinity of tryptophan (Trp-134) and remained
surrounded by other hydrophobic amino acids of the
hydrophobic pocket of site I of BSA protein. Hydrophobic
44, 1285. (b) A. Fujii, Y. Sekiguchi, H. Matsumura, T. Inoue, W.–S.
Chung, S. Hirota and T. Matsuo, Bioconjugate Chem., 2015, 26, 537.
(a) K. Ohand and Z. Guan, Chem. Commun., 2006, 29, 3069. (b) A.
Feher-Voelger, J. Borges-Gonzlez, R. Carrillo, E. Q. Moralesa and J. G-
P. T. Martn, Chem. Eur. J., 2014, 20, 1.
H. Kessler, Angew. Chem., Int. Ed. Engl., 1982, 21, 512.
MacroModel, Version 9.9 Schrodinger, LLC, New York, NY, 2012.
1
0
binding without perturbing the α-helix secondary structure of
BSA (ESI†, Section 5.9) was also supported from an anisotropy
study (ESI†, Section 5.11).
1
1
1
2
We also carried out Isothermal titration calorimetric
measurement
to
investigate
the
thermodynamic 13 (a) G.M. Morris, R. Huey, W. Lindstrom, et al. J. Comput. Chem.,
2009, 16, 2785. (b) J. S. Hudson, L. Ding, V. Le, E. Lewis, D. Graves
Biochemistry, 2014, 53, 3347.
characterization of the interaction of pentaeptide 3 with BSA
in phosphate buffer (pH 7.0) at 298 K. The negative deflections
4
| Chem. Commun., 2018, 00, 1-4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins