Communication
ChemComm
intensity observed for 5 in comparison to 3 reflects an 80/20 ratio of M-
to P-isomers
1 E. Merlet, K. Moreno, A. Tron, N. McClenaghan, B. Kauffmann,
Y. Ferrand and C. Olivier, Chem. Commun., 2019, 55, 9825–9828.
2 D. Zheng, L. Zheng, C. Yu, Y. Zhan, Y. Wang and H. Jiang, Org. Lett.,
2019, 21, 2555–2559.
than (S)-Camph (Fig. 3b). Because 3 and 5 contain the same
sequence of chromophores, their CD spectra should be directly
comparable. The relative CD intensities of 5 and 3 at their
maxima around 385 nm indicate an 80/20 ratio‡ of M- to
P-diastereomers for 5 (Fig. S3, ESI†), which matches the ratio
3 L. Zheng, D. Zheng, Y. Wang, C. Yu, K. Zhang and H. Jiang, Org.
Biomol. Chem., 2019, 17, 9573–9577.
1
observed by H NMR. Taking this ratio into consideration, an
4 G. Lautrette, B. Wicher, B. Kauffmann, Y. Ferrand and I. Huc, J. Am.
Chem. Soc., 2016, 138, 10314–10322.
5 S. Saha, B. Kauffmann, Y. Ferrand and I. Huc, Angew. Chem., Int. Ed.,
2018, 57, 13542–13546.
6 J. M. Alex, V. Corvaglia, X. Hu, S. Engilberge, I. Huc and
P. B. Crowley, Chem. Commun., 2019, 55, 11087–11090.
7 P. S. Reddy, B. Langlois d’Estaintot, T. Granier, C. D. Mackereth,
L. Fischer and I. Huc, Chem. – Eur. J., 2019, 25, 11042–11047.
8 M. Vallade, M. Jewginski, L. Fischer, J. Buratto, K. Bathany,
J.-M. Schmitter, M. Stupfel, F. Godde, C. D. Mackereth and I. Huc,
Bioconjugate Chem., 2019, 30, 54–62.
energy difference between the handedness bias induced by
BRme and Camph of about À3.4 kJ molÀ1 can be derived.
When two BRme units cooperate to bias handedness in the
same sequence, as in 6, we find that the effect of a terminal
(S)-Camph is completely reversed. A main species is observed
1
by H NMR, and CD confirms M handedness (Fig. 3). The CD
intensity of 6 also matches that of 7, which lacks the camphanyl
1
group. Minor signals in the H NMR spectra of 6 and 7 were
observed that can be assigned to the incomplete enantiomeric
purity of BRme arising from the enantiomeric purity of the
lactate precursor. A small amount of one or the other chiral B
unit may have (S) stereochemistry opposite to the (R) configu-
ration of BRme. In these cases, the effect of BRme and that of
BSme would cancel each other and the camphanyl group would
favor P helicity, leading to small amounts of (S,R,S)-P and
(S,S,R)-P diastereomeric conformers of 6 and (S,R)-P/M and
(R,S)-P/M conformers of 7, where the bias of Camph is missing.
In conclusion, quantitative handedness bias was achieved in
water, methanol, and DMSO by placing the new BRme monomer
within a quinoline helix. The energy difference was greater than
that generated by the Camph group. The bias could be further
enhanced by incorporating more than one BRme unit within the
same helix. The handedness bias was not complete only when
BRme was placed near the C-terminus. Full handedness control
could thus be achieved without any modifications at either the
N- or C-terminus, allowing for further functionalization at both
ends of the helix. Being able to avoid bulky handedness-
inducing groups at the N- or C-terminus will also be beneficial
to water solubility, as Camph, Pin, and Oxaz are all lipophilic.
These combined features will be useful for protein surface
recognition using helical foldamers. B units also provide a
new means to introduce side chains at the stereogenic center.
This prospect and the effect of multiple B units on the helix
geometry are being investigated and will be reported in due
course.
9 M. Vallade, P. Sai Reddy, L. Fischer and I. Huc, Eur. J. Org. Chem.,
2018, 5489–5498.
10 J. Buratto, C. Colombo, M. Stupfel, S. J. Dawson, C. Dolain,
B. Langlois d’Estaintot, L. Fischer, T. Granier, M. Laguerre,
B. Gallois and I. Huc, Angew. Chem., Int. Ed., 2014, 53, 883–887.
11 E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai and
K. Maeda, Chem. Rev., 2016, 116, 13752–13990; Z. Liu, X. Hu,
´
´
´
A. M. Abramyan, A. Meszaros, M. Csekei, A. Kotschy, I. Huc and
V. Pophristic, Chem. – Eur. J., 2017, 23, 3605–3615; A. Zhang,
Y. Han, K. Yamato, X. C. Zeng and B. Gong, Org. Lett., 2006, 8,
803–806.
12 A. M. Kendhale, L. Poniman, Z. Dong, K. Laxmi-Reddy,
B. Kauffmann, Y. Ferrand and I. Huc, J. Org. Chem., 2011, 76,
195–200.
13 Li Yang, M. Chunmiao, B. Kauffmann, L. Dongyao and Q. Gan, Org.
Biomol. Chem., 2020, 18, 6643–6650.
14 L. Zheng, Y. Zhan, C. Yu, F. Huang, Y. Wang and H. Jiang, Org. Lett.,
2017, 19, 1482–1485.
15 Y. Inai, Y. Kurokawa and N. Kojima, J. Chem. Soc., Perkin Trans. 2,
2002, 1850–1857; Y. Inai, Y. Kurokawa and T. Hirabayashi, Biopoly-
mers, 1999, 49, 551–564; M. D. Poli, M. D. Zotti, J. Raftery,
J. A. Aguilar, G. A. Morris and J. Clayden, J. Org. Chem., 2013, 78,
2248–2255; R. A. Brown, T. Marcelli, M. D. Poli, J. Sola and
J. Clayden, Angew. Chem., Int. Ed., 2012, 51, 1395–1399.
16 Z. Dong, G. P. A. Yap and J. M. Fox, J. Am. Chem. Soc., 2007, 129,
11850–11853.
17 H.-Y. Hu, J.-F. Xiang, Y. Yang and C.-F. Chen, Org. Lett., 2008, 10,
69–72.
18 E. Kolomiets, V. Berl and J.-M. Lehn, Chem. – Eur. J., 2007, 13,
5466–5479.
19 M. Kudo, V. Maurizot, B. Kauffmann, A. Tanatani and I. Huc, J. Am.
Chem. Soc., 2013, 135, 9628–9631.
20 M. Akazome, Y. Ishii, T. Nireki and K. Ogura, Tetrahedron Lett., 2008,
49, 4430–4433.
´
21 N. Delsuc, F. Godde, B. Kauffmann, J.-M. Leger and I. Huc, J. Am.
Chem. Soc., 2007, 129, 11348–11349.
22 C. Dolain, J. M. Leger, N. Delsuc, H. Gornitzka and I. Huc, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 16146–16151.
Synchrotron data were collected at beamline P14 operated
by EMBL Hamburg at the PETRA III storage ring (DESY,
Hamburg, Germany). We thank Dr Saravanan Panneerselvam
for his assistance in using the beamline.
´
´
23 D. Sanchez-Garcıa, B. Kauffmann, T. Kawanami, H. Ihara,
M. Takafuji, M.-H. l. n. Delville and I. Huc, J. Am. Chem. Soc.,
2009, 131, 8642–8648.
24 B. Baptiste, C. Douat-Casassus, K. Laxmi-Reddy, F. Godde and
I. Huc, J. Org. Chem., 2010, 75, 7175–7185.
25 X. Hu, S. J. Dawson, Y. Nagaoka, A. Tanatani and I. Huc, J. Org.
Chem., 2016, 81, 1137–1150.
26 C. Dolain, H. Jiang, J.-M. Leger, P. Guionneau and I. Huc, J. Am.
Conflicts of interest
´
There are no conflicts to declare.
Chem. Soc., 2005, 127, 12943–12951.
27 C. C. Mcdonald and W. D. Phillips, J. Am. Chem. Soc., 1967, 89,
6332–6341.
28 G. W. Collie, K. Pulka-Ziach, C. M. Lombardo, J. Fremaux, F. Rosu,
M. Decossas, L. Mauran, O. Lambert, V. Gabelica, C. D. Mackereth
and G. Guichard, Nat. Chem., 2015, 7, 871–878.
Notes and references
‡The total CD intensity results from the sum of the CD signals of P- and
M-isomers, which have opposite signs. Therefore, the 40% lower CD
Chem. Commun.
This journal is © The Royal Society of Chemistry 2021