10.1002/anie.202013041
Angewandte Chemie International Edition
RESEARCH ARTICLE
g) R. Shintani, C. Takagi, T. Ito, M. Naito, K. Nozaki, Angew. Chem. Int.
Ed. 2015, 54, 1616; Angew. Chem. 2015, 127,1636; h) R. Shintani, H.
Kurata, K. Nozaki, Chem. Commun. 2015, 51, 11378; i) Y. Naganawa, T.
Namba, M. Kawagishi, H. Nishiyama, Chem. Eur. J. 2015, 21, 9319; j) R.
Kumar, Y. Hoshimoto, H. Yabuki, M. Ohashi, S. Ogoshi, J. Am. Chem.
Soc. 2015, 137, 11838; k) M. Murai, H. Takeshima, H. Morita, Y.
Kuninobu, K. Takai, J. Org. Chem. 2015, 80, 5407; l) M. Murai, K.
Matsumoto, Y. Takeuchi, K. Takai, Org. Lett. 2015, 17, 3102; m) K. Igawa,
D. Yoshihiro, Y. Abe, K. Tomooka, Angew. Chem. Int. Ed. 2016, 55,
5814; Angew. Chem. 2016, 128, 5908; n) R. Shintani, R. Takano, K.
Nozaki, Chem. Sci. 2016, 7, 1205; o) J. Zhang, J.-Z. Xu, Z.-J. Zheng, Z.
Xu, Y.-M. Cui, J. Cao, L.-W. Xu, Chem. Asian J. 2016, 11, 2867; p) M.
Murai, Y. Takeuchi, K. Yamauchi, Y. Kuninobu, K. Takai, Chem. Eur. J.
2016, 22, 6048; q) M. Murai, R. Okada, A. Nishiyama, K. Takai, Org. Lett.
2016, 18, 4380; r) M. Murai, Y. Takeuchi, K. Yamauchi, Y. Kuninobu, K.
Takai, Chem. Eur. J. 2016, 22, 6048; s) Y. Sato, C. Takagi, R. Shintani,
K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 9211; Angew. Chem. 2017,
129, 9339; t) R. Shintani, N. Misawa, R. Takano, K. Nozaki, Chem. Eur.
J. 2017, 23, 2660; u) P.-W. Long, X.-F. Bai, F. Ye, L. Li, Z. Xu, K.-F. Yang,
Y.-M. Cui, Z.-J. Zheng, L.-W. Xu, Adv. Synth. Catal. 2018, 360, 2825; v)
H. Chen, Y. Chen, X. Tang, S. Liu, R. Wang, T. Hu, L. Gao, Z. Song,
Angew. Chem. Int. Ed. 2019, 58, 4695; Angew. Chem. 2019, 131, 4743;
w) Y. Lin, W.-Y. Ma, Z. Xu, Z.-J. Zheng, J. Cao, K.-F. Yang, Y.-M. Cui,
L.-W. Xu, Chem. Asian J. 2019, 14, 2082; x) G. Zhang, Y. Li, Y. Wang,
Q. Zhang, T. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 11927,
Angew. Chem. 2020, 132, 12025; while our manuscript is under review,
He group reported the syntheses of tetraorganosilicons: y) D. Mu, W.
Yuan, S. Chen, N. Wang, B. Yang, L. You, B. Zu, P. Yu, C. He, J. Am.
Chem. Soc. 2020, 142, 13459; z) B. Yang, W. Yang, Y. Guo, L. You, C.
He, Angew. Chem. Int. Ed. 2020, 10.1002/anie.202009912.
Scheme 7. Determination of the chirality.
Conclusion
In conclusion, we have developed the first viable and general
method for the construction of chiral monohydrosilanes, via Rh
catalyzed dehydrogenative coupling between dihydrosilane Si-H
bond and C(sp2)-H bonds. This method provided a wide scope of
chiral monohydrosilanes, with broad choices of substituents on
the Si centers, especially alkyl-substituted stereogenic silicons
that could not be made otherwise. The chiral monohydrosilanes
were a powerful platform to access chiral tetraorganosilanes by
virtue of the versatile reactivity of the remaining Si-H bonds, in
either a step-wise manner or a tandem fashion. It also can be
used as a valuable tool in probing the silicon stereochemistry.
Mechanistic studies as well as intermolecular variants of this
method are under investigation in our laboratory and will be
reported in due case.
[3]
[4]
a) R. J. P. Corriu, J. J. E. Moreau, J. Organomet. Chem. 1974, 64, C51;
b) T. Hayashi, K. Yamamoto, M. Kumada, Tetrahedron Lett. 1974, 15,
331; c) T. Ohta, M. Ito, A. Tsuneto, H. Takaya, J. Chem. Soc. Chem.
Commun. 1994, 2525.
a) K. Tamao, K. Nakamura, H. Ishii, S. Yamaguchi, M. Shiro, J. Am.
Chem. Soc. 1996, 118, 12469; b) Y. Naganawa, T. Namba, M. Kawagishi,
H. Nishiyama, Chem. Eur. J. 2015, 21, 9319; c) G. Zhan, H.-L. Teng, Y.
Luo, S.-J. Lou, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2018, 57,
12342; Angew. Chem. 2018, 130, 12522; d) X Chang, P.-L Ma, H.-C.
Chen, C.-Y. Li, P. Wang, Angew. Chem. Int. Ed. 2020, 59, 8937; Angew.
Chem. 2020, 132, 9022; e) Z.-Y. Zhao, Y.-X. Nie, R.-H. Tang, G.-W. Yin,
J. Cao, Z. Xu, Y.-M. Cui, Z.-J. Zheng, L.-W. Xu, ACS Catal. 2019, 9, 9110.
a) K. Igawa, D. Yoshihiro, N. Ichikawa, N. Kokan, K. Tomooka, Angew.
Chem. Int. Ed. 2012, 51, 12745; Angew. Chem. 2012, 124, 12917; b) H.
Wen, X. Wan, Z. Huang, Angew. Chem. Int. Ed. 2018, 57, 6319; Angew.
Chem. 2018, 130, 6427.
Acknowledgements
[5]
We thank the National Natural Science Foundation of China (Nos.
21625104 and 21971133), National Key Research
&
[6]
[7]
Y. Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2010, 132,
4510.
Development Program of China (Nos. 2017YFA0505203), and
the General Financial Grant from the China Postdoctoral Science
Foundation (2017M610074).
a) R. J. P. Corriu, J. J. E. Moreau, Tetrahedron Lett. 1973, 14, 4469; b)
R. J. P. Corriu, J. J. E. Moreau, J. Organometallic Chem. 1976, 120, 337;
c) D. R. Schmidt, S. J. O’Malley, J. L. Leighton, J. Am. Chem. Soc. 2003,
125, 1190.
Keywords: monohydrosilane • dihydrosilanes •
desymmetrization • enantioselectivity
[8]
a) Y. Kurihara, M. Nishikawa, Y. Yamanoi, H. Nishihara, Chem. Commun.
2012, 48, 11564; b) L. Chen, J.-B. Huang, Z. Xu, Z.-J. Zheng, K.-F. Yang,
Y.-M. Cui, J. Cao, L.-W. Xu, RSC Adv. 2016, 6, 67113; c) S. Koga, S.
Ueki, M. Shimada, R. Ishii, Y. Kurihara, Y. Yamanoi, J. Yuasa, T. Kawai,
T. Uchida, M. Iwamura, K. Nozaki, H. Nishihara, J. Org. Chem. 2017, 82,
6108.
[1]
For reviews, see: a) L.-W. Xu, L.Li, G.-Q. Lai, J.-X. Jiang, Chem. Soc.
Rev., 2011, 40, 1777; b) R. Shintani, Asian J. Org. Chem. 2015, 4, 510;
c) C. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946; d) L. Li, Y.
Zhang, L. Gao, Z. Song, Tetrahedron Lett. 2015, 56, 1466; e) J. O. Bauer,
C. Strohmann, Eur. J. Inorg. Chem. 2016, 2868; f) Y.-M. Cui, Y. Lin, L.-
W. Xu, Coord. Chem. Rev. 2017, 330, 37; g) R. Shintani, J. Synth. Org.
Chem. Jpn. 2018, 76, 1163; h) R. Shintani, Synlett 2018, 29, 388.
For examples for chiral tetraorganosilanes, see: a) R. Shintani, K. Moriya,
T. Hayashi, J. Am. Chem. Soc. 2011, 133, 16440; b) R. Shintani, H.
Otomo, K. Ota, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 7305; c) R.
Shintani, E. E. Maciver, F. Tamakuni, T. Hayashi, J. Am. Chem. Soc.
2012, 134, 16955; d) M. Onoe, K. Baba, Y. Kim, Y. Kita, M. Tobisu, N.
Chatani, J. Am. Chem. Soc. 2012, 134, 19477; e) R. Shintani, K. Moriya,
T. Hayashi, Org. Lett. 2012, 14, 2902; f) Y. g) X. Lu, L. Li, W. Yang, K.
Jiang, K.-F. Yang, Z.-J. Zheng, L.-W. Xu, Eur. J. Org. Chem. 2013, 5814;
[9]
a) Y. Kuninobu, K. Yamauchi, N. Tamura, T. Seiki, K. Takai, Angew.
Chem. Int. Ed. 2013, 52, 1520; Angew. Chem. 2013, 125, 1560; b) M.
Murai, H. Takeshima, H. Morita, Y. Kuninobu, K. Takai, J. Org. Chem.
2015, 80, 5407; c) M. Murai, Y. Takeuchi, K. Yamauchi, Y. Kuninobu, K.
Takai, Chem. Eur. J. 2016, 22, 6048.
[2]
[10]
a) Q-W Zhang, K. An, W He, Angew. Chem. Int. Ed. 2014, 53, 5667;
Angew. Chem. 2014, 126, 5773; b) Q. W. Zhang, K. An, L. C. Liu, Y. Yue,
W. He, Angew. Chem. Int. Ed. 2015, 54, 6918; Angew. Chem. 2015, 127,
7022; c) Q.-W. Zhang, K. An, L.-C. Liu, S. Guo, C. Jiang, H. Guo, W. He,
Angew. Chem. Int. Ed. 2016, 55, 6319; Angew.Chem. 2016, 128, 6427;
d) Q.-W. Zhang, K. An, L.-C. Liu, Q. Zhang, H. Guo, W. He, Angew.
6
This article is protected by copyright. All rights reserved.