Communication
Organic & Biomolecular Chemistry
Schwarz (Institute of Physical Chemistry at KIT) for ESI-MS
measurements.
Notes and references
1 A. Waggoner, Curr. Opin. Chem. Biol., 2006, 10, 62–66;
L. D. Lavis and R. T. Raines, ACS Chem. Biol., 2008, 3, 142–
155; M. Y. Berezin and S. Achilefu, Chem. Rev., 2010, 110,
2641–2684; H. Kobayashi, M. Ogawa, R. Alford,
P. L. Choyke and Y. Urano, Chem. Rev., 2010, 110, 2620–
2640; L. M. Wysocki and L. D. Lavis, Curr. Opin.
Chem. Biol., 2011, 15, 752–759; J.-S. Lee, M. Vendrell
and Y.-T. Chang, Curr. Opin. Chem. Biol., 2011, 15, 760–
767.
Fig. 3 Photostability of dyes 1, 8–12 measured by the loss of fluorescence
intensity in the presence of DNA (10 µM dye, 2.5 µM dsDNA, 10 mM Na–Pi
buffer, 250 mM NaCl, 5% ethanol).
2 U. Asselyne, Curr. Org. Chem., 2006, 10, 491–518;
D. M. Kolpashchikov, Chem. Rev., 2010, 110, 4709–4723;
R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem. Rev., 2010,
110, 2579–2619.
whole set of CyIQ dyes presented herein (1–12) and make this
dye the most promising one for molecular imaging.
3 A. Mishra, R. K. Behera, B. K. Mishra and G. B. Behera,
Chem. Rev., 2000, 100, 1973–2011; S. Dash, M. Panigrahi,
S. Baliyarsingh, P. K. Behera, S. Patel and B. K. Mishra,
Curr. Org. Chem., 2011, 15, 2673–2689; M. Levitus and
S. Ranjit, Q. Rev. Biophys., 2011, 44, 123–151.
4 B. A. Armitage, Top. Curr. Chem., 2005, 253, 55–76.
5 K. C. Hannah and B. A. Armitage, Acc. Chem. Res., 2004, 37,
845–853.
6 N. I. Shank, K. J. Zanotti, F. Lanni, P. B. Berget and
B. A. Armitage, J. Am. Chem. Soc., 2009, 131, 12960–
12969.
7 H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada,
R. P. Haugland, R. A. Mathies and A. N. Glazer, Nucleic
Acids Res., 1992, 20, 2803–2812.
8 A. I. Dragan, R. Pavlovic, J. B. McGivney, J. R. Casas-Finet,
E. S. Bishop, R. J. Strouse, M. A. Schenerman and
C. D. Geddes, J. Fluoresc., 2012, 22, 1189–1199.
9 H. P. Spielmann, D. E. Wemmer and J.-P. Jacobsen, Bio-
chemistry, 1995, 34, 8542–8533.
10 H. Ihmels and D. Otto, Top. Curr. Chem., 2005, 258, 161–
204.
11 A. Biancardi, T. Biver, A. Marini, B. Mennucci and F. Secco,
Phys. Chem. Chem. Phys., 2011, 13, 12595–12602.
12 G. L. Silva, V. Ediz, D. Yaron and B. A. Armitage, J. Am.
Chem. Soc., 2007, 129, 5710–5718.
Fusing a benzene ring to the quinolinium moiety was not
tried in the set, but an additional benzene ring at the indole
moiety (carbazole) gives dye 8. In comparison to dye 9 (and
similar to dyes 7 vs. 1), the photostability of dye 8 is deteriorated
and the Stokes’ shift is enhanced from 123 cm−1 to 83 cm−1
.
Dye 8 (and 7 too) exhibits the strongest binding to DNA among
all dyes presented herein (K = 2.5 × 105 −1). Finally, two
M
additional dyes 11 and 12 were synthesized based on the com-
mercial availability of indole precursors bearing an isopropyl
group at the 6-position. Dye 11 is not methylated at the nitro-
gen of the indole part and shows similar optical properties as
dye 9 but significantly reduced photostability. In contrast, the
N-methylated dye 12 shows improved quantum yield, fluo-
rescence enhancement in the presence of DNA and photo-
stability. This makes this dye another promising candidate for
fluorescent imaging.
In conclusion, we could show that the photostability of
cyanine–styryl dyes of the indole–quinolinium type (CyIQ) can
be improved significantly while the excellent optical properties
including the bright fluorescence in the presence of DNA can
be maintained or even improved, too. The attachment of the
styryl bridge to the 4-position of the quinolinium part
improves both optical properties and photostabilities. More-
over, methylation of the indole nitrogen in dyes 2, 6, 10 and 12
and/or the introduction of a methoxy substituent into the qui-
nolinium part of dyes 5 and 6 yields astonishingly photostable
fluorophores. These effects were rationalized by identification
of the primary photoproducts. Finally, dye 10 was elucidated
as the most promising candidate for fluorescent DNA/RNA
imaging based on its excellent photostability, quantum yield
in the presence of DNA and brightness.
13 V. Karunakaran, J. L. P. Lustres, L. Zhao, N. P. Ernsting and
O. Seitz, J. Am. Chem. Soc., 2006, 128, 2954–2962.
14 X. Wang and U. J. Krull, Bioorg. Med. Chem. Lett., 2005, 15,
1725–1729; R. Lartia and U. Asselyne, Chem.–Eur. J., 2006,
12, 2270–2281; L. Bethge, I. Singh and O. Seitz, Org.
Biomol. Chem., 2010, 8, 2439–2448.
15 O. Köhler, D. V. Jarikote and O. Seitz, ChemBioChem, 2005,
6, 69–77; E. Socher, A. Knoll and O. Seitz, Org. Biomol.
Chem., 2012, 10, 7363–7371; S. Kummer, A. Knoll,
E. Socher, L. Bethge, A. Herrmann and O. Seitz, Bioconju-
gate Chem., 2012, 23, 2051–2060.
Acknowledgements
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) and KIT is gratefully acknowledged. We thank Ulrike 16 A. Okamoto, Chem. Soc. Rev., 2011, 40, 5815–5828.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2013