This work is financially supported by the Research Grant
Council of Hong Kong, General Research Fund 402508 and
Collaborative Research Fund CUHK2/CRF/08. The authors
would like to thank Prof. Zhifeng Liu (The Chinese University
of Hong Kong) for the DFT calculations and Prof. Feng Yan
(The Hong Kong Polytechnic University) for XRD.
(b) Q. Tang, D. Zhang, S. Wang, N. Ke, J. Xu, J. C. Yu and
Q. Miao, Chem. Mater., 2009, 21, 1400–1405; (c) S.-Z. Weng,
P. Shukla, M.-Y. Kuo, Y.-C. Chang, H.-S. Sheu, I. Chao and
Y.-T. Tao, ACS Appl. Mater. Interfaces, 2009, 1, 2071–2079;
(d) Y. Ma, Y. Sun, Y. Liu, J. Gao, S. Chen, X. Sun, W. Qiu,
G. Yu, G. Cui, W. Hu and D. Zhu, J. Mater. Chem., 2005, 15,
4894–4898.
9 (a) J. A. VanAllan, G. A. Reynolds and R. E. Adel, J. Org. Chem.,
1963, 28, 520–524; (b) G. M. Badger and R. Petti, J. Chem. Soc.,
1951, 3211–3215; (c) M. A. Fox and T. A. Voynick, J. Org. Chem.,
1981, 46, 1235–1239.
Notes and references
z Crystal data for TAPQ: C18H8N4O2: M = 312.28, monoclinic, space
group P21/n, a = 3.8926(2) A, b = 9.0707(4) A, c = 18.4339(10) A,
a = 901, b = 92.332(4)1, g = 901, V = 650.34(6) A3, Z = 2,
3495 reflections collected, 1088 unique (Rint = 0.0220). The final R
was 0.0561 (all data) and wR was 0.1704 (all data). Crystal data for
DATQ: C16H8N2O2: M = 260.24, monoclinic, space group P21/c,
a = 12.1301(6) A, b = 3.8545(2) A, c = 24.3276(12) A, a = 901,
b = 94.5780(10)1, g = 901, V = 1133.82(10) A3, Z = 4, 12 534
reflections collected, 2067 unique (Rint = 0.0378). The final R was
0.0564 (all data) and wR was 0.1315 (all data).
10 (a) Q. Tang, J. Liu, H. S. Chan and Q. Miao, Chem.–Eur. J., 2009,
15, 3965–3969; (b) S. Miao, S. M. Brombosz, P. V. R. Schleyer,
J. I. Wu, S. Barlow, S. R. Marder, K. I. Hardcastle and U. H. F.
Bunz, J. Am. Chem. Soc., 2008, 130, 7339–7344.
11 The commonly used HOMO energy level of ferrocene is ꢀ4.80 eV.
See: (a) J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt,
H. Bassler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551–554;
¨
(b) B. W. D’Andrade, S. Datta, S. R. Forrest, P. Djurovich,
E. Polikarpov and M. E. Thompson, Org. Electron., 2005, 6,
11–20.
1 For reviews on n-type organic semiconductors and n-channel
OTFTs, see: (a) C. R. Newman, C. D. Frisbie, D. A. da Silva
Filho, J.-L. Bredas, P. C. Ewbank and K. R. Mann, Chem. Mater.,
´
2004, 16, 4436–4451; (b) J. Zaumseil and H. Sirringhaus, Chem.
Rev., 2007, 107, 1296–1323; (c) Y. Yamashita, Chem. Lett., 2009,
38, 870–875.
2 For recent reviews on organic semiconductors for OTFTs, see:
´
(a) A. R. Murphy and J. M. Frechet, Chem. Rev., 2007, 107,
1066–1096; (b) S. Allard, M. Forster, B. Souharce, H. Thiem and
U. Scherf, Angew. Chem., Int. Ed., 2008, 47, 4070–4098;
(c) A. Facchetti, Mater. Today, 2007, 10, 28–37; (d) E. Anthony,
Chem. Rev., 2006, 106, 5028–5048.
3 A related design of n-type semiconductors is diindenopyrazine-
dione derivatives. See T. Nakagawa, D. Kumaki, J. Nishida,
S. Tokito and Y. Yamashita, Chem. Mater., 2008, 20, 2615–2617.
4 To the best of our knowledge, the recently reported anthraquinone
derivatives are the only example of n-type organic semiconductors
based on quinones. See M. Mamada, J. Nishida, S. Tokito and
Y. Yamashita, Chem. Commun., 2009, 2177–2179.
12 (a) R. A. Laudise, C. Kloc, P. G. Simpkins and T. Siegrist,
J. Cryst. Growth, 1998, 187, 449–454; (b) A. J. C. Buurma,
O. D. Jurchescu, I. Shokaryev, J. Baas, A. Meetsma, G. A. de
Wijs, R. A. de Groot and T. T. M. Palstra, J. Phys. Chem. C, 2007,
111, 3486–3489.
13 G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in
Structural Chemistry and Biology, Oxford University Press,
Oxford, 1999.
14 G. R. Desiraju, Crystal Engineering: The Design of Organic Solids,
Elsevier, Amsterdam, 1989, ch. 5.
15 The quadruple weak hydrogen bonds are also found in the
reported crystal structures of 1,6,11-triaza-5,12-tetracenequinone
derivatives, but were not recognized in that report. See: Y.-S. Kim,
S.-Y. Park, H.-J. Lee, M.-E. Suh, D. Schollmeyer and C.-O. Lee,
Bioorg. Med. Chem., 2003, 11, 1709–1714.
16 Both the unit cells of TAPQ and 6,13-pentacenequinone contain
two molecules. For the crystal structure of 6,13-pentacenequinone,
see: A. V. Dzyabchenko, V. E. Zavodnik and V. K. Bel’skii,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
1979, 35, 2250–2253.
5 M. Winkler and K. N. Houk, J. Am. Chem. Soc., 2007, 129,
1805–1815.
17 Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, A. Locklin
and Z. Bao, J. Am. Chem. Soc., 2009, 131, 9396–9404.
18 XRD from the film shows one main peak at 2y = 9.241 (d-spacing:
9.57 A) with two small peaks at 2y = 11.731 (d-spacing: 7.54 A)
and 2y = 18.571 (d-spacing: 4.77 A). In comparison, the (002)
diffraction derived from the single crystal structure appears at
2y = 9.641 (d-spacing: 9.17 A). The fact that the diffractions from
thin films are different from those derived from the single crystal
struture indicates different crystalline polymorphs of TAPQ in thin
films and in bulk crystals.
6 S. Miao, A. L. Appleton, N. Berger, S. Barlow, S. R. Marder,
K. I. Hardcastle and U. H. F. Bunz, Chem.–Eur. J., 2009, 15,
4990–4993.
7 Nitrogen-rich heteroanthracenes that are substituted with electron-
withdrawing groups have been reported as n-type organic semi-
conductors. See: (a) J. Nishida, Naraso, S. Murai, E. Fujiwara,
H. Tada, M. Tomura and Y. Yamashita, Org. Lett., 2004, 6,
2007–2010; (b) H. Wang, Y. Wen, X. Yang, Y. Wang, W. Zhou,
S. Zhang, X. Zhan, Y. Liu, Z. Shuai and D. Zhu, ACS Appl.
Mater. Interfaces, 2009, 1, 1122–1129.
19 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 2002,
14, 99–117.
8 (a) Q. Miao, T.-Q. Nguyen, T. Someya, G. B. Blanchet and
C. Nuckolls, J. Am. Chem. Soc., 2003, 125, 10284–10287;
ꢂc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2977–2979 | 2979