Biswajit Chowdhury et al.
Press); (c) Simándi T M, Simándi L I, Gy o˝ r M, Rocken-
mimicking the 2-his-1-carboxylate facial triad Inorg.
Chem. 49 4518–4523; (b) De A, Garai M, Yadav
H R, Choudhury A R and Biswas B 2017 Catalytic
bauer A and Gömöry Á 2004 Kinetics and mechanism of
the ferroxime (II)-catalysed biomimetic oxidation of 2-
aminophenol by dioxygen. A functional phenoxazinone
synthase model Dalton Trans. 1056–1060
2
7. (a) Hollstein U 1974 Actinomycin. Chemistry and mech- 37. (a) Sawyer D T 1991 Oxygen Chemistry (New York:
anism of action Chem. Rev. 74 625; (b) Simándi L I,
Németh S and Rumlis N 1987 Study of the oxidation of
Oxford University Press); (b) Mialane P, Tehertanov L,
Banse F, Sainton J and Girerd J 2000Aminopyridine iron
catecholate complexes as models for intradiol catechol
dioxygenases. Synthesis, structure, reactivity, and spec-
troscopic studies Inorg. Chem. 39 2440
2
(
-aminophenol by molecular oxygen catalyzed by cobalt
II) phthalocyaninetetrasodiumsulfonate in water J. Mol.
Catal. 42 357
2
8. (a) Butenandt A 1957 Über Ommochrome, eine Klasse 38. Fereday R J, Hodgson P, Tyagi S and Hathaway B J
natürlicher Phenoxazon-Farbstoffe Angew. Chem. 69
6; (b) Simándi TM, Simándi LI, Gy o˝ r M, Rocken-
bauer A, Gömöry A, 2004 Kinetics and mechanism of
1981Thecrystalstructureandelectronicpropertiesofbis
(2, 2’-bipyridyl)-copper (II) bis (hexafluorophosphate) J.
Inorg. Nucl. Chem. Lett. 17 243
1
the ferroxime (II)-catalysed biomimetic oxidation of 2- 39. De A, Dey D, Yadav H R, Maji M, Rane V, Kadam R
aminophenol by dioxygen. A functional phenoxazinone
synthase model J. Chem. Soc. Dalton Trans. 1056
9. (a) Cavill G W K, Clezy P S, Tetaz J R and Werner R
M, Choudhury A R and Biswas B 2016 Unprecedented
hetero-geometric discrete copper (II) complexes: crystal
structure and bio-mimicking of Catecholase activity J.
Chem. Sci. 128 1775
2
L 1959 Synthesis of novel angular diazaphenoxazinone
derivatives via palladium catalyzed Buchwald-Hartwig 40. (a) Mukherjee C, Weyhermuller T, Bothe E, Rentschler
amidation protocols Tetrahedron 5 275; (b) Kaizer J,
Csonka R and Speier G 2002 TEMPO-initiated oxida-
tion of 2-aminophenol to 2-aminophenoxazin-3-one J.
Mol. Catal. A: Chem. 180 91
E and Chaudhury P 2007 A Tetracopper (II)-tetraradical
cuboidal core and its reactivity as a functional model
of phenoxazinone synthase Inorg. Chem. 46 9895; (b)
Barry C E, Nayar P G and Begley T G 1989 A fungal
metabolite mediates degradation of non-phenolic lignin
structures and synthetic lignin by laccase Biochemistry
28 6323
3
0. (a) Que L, Jr, Lipscomb J D, Münck E and Wood J M
1
977 Protocatechuate 3,4-dioxygenase: inhibitor stud-
ies and mechanistic implications Biochim. Biophys. Acta
85 60
1. (a) Ohlendorf D H, Lipscomb J D and Weber P C
988 Structure and assembly of protocatechuate 3, 4-
4
41. (a) Chatterjee S, Sheet D and Paine T K 2013 An
oxido-bridged diiron (II) complex as functional model
of catechol dioxygenase Chem. Commun. 49 10251;
(b) Balamurugan M, Vadivelu P and Palaniandavar M
2014 Iron (III) complexes of tripodal tetradentate 4N lig-
ands as functional models for catechol dioxygenases: the
electronic vs. steric effect on extradiol cleavage Dalton
Trans. 43 14653
3
1
dioxygenaseNature336 403; (b) SolomonEI, Sundaram
U M, Machonkin T E 1996 Multicopper oxidases and
oxygenases Chem. Rev. 96 2563; (c) Ohlendorf D H,
Orville A M and Lipscomb J D 1994 Structure of
protocatechuate 3, 4-dioxygenase from Pseudomonas
aeruginosa at 2.15 Å resolution J. Mol. Biol. 244 586; (d)
Valley M P, Brown C K, Burk D L, Vetting M W, Ohlen-
dorf D H and Lipscomb J D 2005 Roles of the equatorial
tyrosyl iron ligand of protocatechuate 3, 4-dioxygenase
in catalysis Biochemistry 44 11024
4
2. (a) Ito M and Que L Jr. 1997 Angew. Chem. Int. Ed. Engl.
6 1342; (b) Dey D, De A, Yadav H R, Guin P S, Choud-
hury A R, Kole N and Biswas B 2016 ChemistrySelect
1 1910; (c) Dey D, Das S and Biswas B 2016 J. Indian
3
0
Chem. Soc. 93 495
4
3. Ito M and Que L Jr. 1997 Biomimetic extradiol cleavage
ofcatechols:insightsintotheenzymemechanismAngew.
Chem. Int. Ed. Engl. 36 1342
4. Funabiki T, Mizoguchi A, Sugimoto T, Tada S,
Tsuji M, Sakamoto H and Yoshida S 1986 Oxyge-
nase model reactions. 1. Intra-and extradiol oxygena-
tions of 3, 5-di-tert-butylcatechol catalyzed by (bipyri-
dine)(pyridine) iron (III) complex J. Am. Chem. Soc. 108
3
2. (a) Youngme S, Phuengphai P, Chaichit N, Mutikainen
I, Turpeinen U and Murphy B M 2007 Crystal
structures and electronic properties of three fluxional
4
[
Cu(di-2-pyridylamine) (OXO)]Y complexes J. Coord.
Chem. 60 131; (b) Choudhury S R, Chen C-Y, Seth
2
S, Kar T, Lee HM, Colaciu E and Mukhopadhyay S
2
009 Anion-π interaction stitching 2-D layers formed
by self-assembly of cations of a mononuclear copper(II)
2921
complex: synthesis, crystal structure and magnetism of
ꢀ
45. Die A, Gatteschi D and Pardi L 1993 Synthe-
sis, characterization, and reactivity of catecholato
adducts of iron(III) triaza- and tetraazamacrocyclic com-
plexes:chemical evidence of the role of the metal ion in
the oxidative cleavage Inorg. Chem. 32 1389
6. Pascaly M, Duda M, Rompel A, Sift BH, Meyer-Klaucke
W and Krebs B 1999 Novel iron (III) complexes with
imidazole containing tripodal ligands as model sys-
tems for catechol dioxygenases Inorg. Chim. Acta 291
[
Cu(OAc)(2,2 − dypam) ](ClO4) [HOAc = acetic acid,
2
ꢀ
ꢀ
2
5
, 2 -dypam = 2,2 -dipyridylamine] J. Coord. Chem. 62
40
3
3
3. CrystalClear 2.0; Rigaku Corporation: Tokyo, Japan.
4. Sheldrick GM, 2008 Crystal structure refinement with
SHELXL Acta Cryst. A 64 112
5. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A
K and Puschmann H 2009 OLEX2: a complete structure
solution, refinement and analysis program J. Appl. Cryst.
4
3
289
42 339
4
7. Pascaly M, Nazikkol C, Schweppe F, Wiedemann A,
Zurlinden K and Krebs B 2000 Structures and properties
3
6. (a) Paria S, Halder P and Paine T K 2010 A functional
model of extradiol-cleaving catechol dioxygenases: