Journal of the American Chemical Society
Page 4 of 6
phosphorescent examples.11 These data importantly confirm that
the favourable long-wavelength PL of a neat film of CAT-1 can be
retained in an EL device.
Emitting Diodes with Doublet Emission. Nature 2018, 563, 536–
540.
1
2
3
4
5
6
7
8
(5)
Lei, Z.; Sun, C.; Pei, P.; Wang, S.; Li, D.; Zhang, X.; Zhang, F.
Stable, Wavelength-Tunable Fluorescent Dyes in the NIR-II
Region for in-Vivo High-Contrast Bioimaging and Multiplexed
Biosensing. Angew. Chem. Int. Ed. 2019, 58, 8166–8171.
Kim, J. H.; Yun, J. H.; Lee, J. Y. Recent Progress of Highly
Efficient Red and Near-Infrared Thermally Activated Delayed
Fluorescent Emitters. Adv. Opt. Mater. 2018, 1800255.
Jiang, J.; Xu, Z.; Zhou, J.; Hanif, M.; Jiang, Q.; Hu, D.; Zhao, R.;
Wang, C.; Liu, L.; Cao, Y. Enhanced Pi Conjugation and
Donor/Acceptor Interactions in D ‑ A ‑ D Type Emitter for Highly
E Ffi Cient Near-Infrared Organic Light- Emitting Diodes with
an Emission Peak at 840 nm. Chem. Mater. 2019, 31, 6499–6505.
Ye, H.; Kim, D. H.; Chen, X.; Sandanayaka, A. D. S.; Kim, J. U.;
Zaborova, E.; Canard, G.; Tsuchiya, Y.; Choi, E. Y.; Wu, J. W.;
Fages, F.; Bredas, J.-L.; D’Aléo, A.; Ribierre, J.-C.; Adachi, C.
Near-Infrared Electroluminescence and Low Threshold
In conclusion, this work provides a great advance into the NIR
from a delayed fluorescent material. At the high donor and acceptor
strengths required for NIR TADF, the incorporation of multiple do-
nors is essentially ineffectual at red-shifting emission.19,22–25,28 In
contrast we have shown that adopting an intrinsically simple D–A
system structurally liberates molecules for rational functionaliza-
tion to greatly stabilize the ICT state. We have succeeded in obtain-
ing a dramatic red-shift in PL λmax of over 100 nm from a material
capable of TADF compared to previous works (Figure 1). This fa-
cilitated fabrication of OLEDs displaying impressive EL λmax val-
ues of > 900 nm. The next step is clearly to improve the PLQY in
this newly accessed low energy region. This may be possible
through incorporation of a more rigid electron donor capable of
suppressing aggregation-induced quenching. Nevertheless, with re-
spect to emission wavelength, CAT-1 affords rapid and important
progress. These unprecedented results crucially stem from a design
strategy that is conceptually simple and easy to implement syntheti-
cally. It will be broadly applicable to other systems and heavily in-
fluence future NIR TADF design.
(6)
(7)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8)
Amplified Spontaneous Emission above 800 nm from
a
Thermally Activated Delayed Fluorescent Emitter. Chem. Mater.
2018, 30, 6702–6710.
(9)
Qian, B. G.; Zhong, Z.; Luo, M.; Yu, D.; Zhang, Z.; Wang, Z. Y.;
Ma, D. Simple and Efficient Near-Infrared Organic
Chromophores for Light-Emitting Diodes with Single
Electroluminescent Emission above 1000 nm. Adv. Mater. 2009,
21, 111–116.
(10)
Qian, G.; Dai, B.; Luo, M.; Yu, D.; Zhan, J.; Zhang, Z.; Dongge,
M.; Wang, Z. Y. Band Gap Tunable, Donor-Acceptor-Donor
Charge-Transfer Heteroquinoid-Based Chromophores: Near
Infrared Photoluminescence and Electroluminescence. Chem
Mater. 2008, 20, 6208–6216.
Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR)
Organic Light-Emitting Diodes (OLEDs): Challenges and
Opportunities. Adv. Funct. Mater. 2019, 29, 1807623.
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly Efficient Organic Light-Emitting Diodes from Delayed
Fluorescence. Nature 2012, 492, 234–238.
Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.;
Miyazaki, H.; Adachi, C. Efficient up-Conversion of Triplet
Excitons into a Singlet State and Its Application for Organic Light
Emitting Diodes. Appl. Phys. Lett. 2011, 98, 83302.
Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y.
Highly Efficient Near-Infrared Delayed Fluorescence Organic
Light Emitting Diodes Using a Phenanthrene-Based Charge-
Transfer Compound. Angew. Chemie - Int. Ed. 2015, 54, 13068–
13072.
Supporting Information
NMR spectra, electrochemical data, thermogravimetric analysis,
computational data, additional photophysical and device data, and
(11)
(12)
(13)
thin
film
X-ray
diffraction
data
(PDF)
AUTHOR INFORMATION
Corresponding Authors
Author Contributions
§These authors contributed equally to the experimental work.
(14)
Notes
The authors declare no competing financial interests.
(15)
(16)
Yuan, Y.; Hu, Y.; Zhang, Y. X.; Lin, J. D.; Wang, Y. K.; Jiang,
Z. Q.; Liao, L. S.; Lee, S. T. Over 10% EQE Near-Infrared
Electroluminescence Based on a Thermally Activated Delayed
Fluorescence Emitter. Adv. Funct. Mater. 2017, 27, 1700986.
Kim, D.-H.; D’Aléo, A.; Chen, X.-K.; Sandanayaka, A. D. S.;
Yao, D.; Zhao, L.; Komino, T.; Zaborova, E.; Canard, G.;
Tsuchiya, Y.; Choi, E.; Wu, J. W.; Fages, F.; Brédas, J.-L.;
Ribierre, J.-C.; Adachi, C. High-Efficiency Electroluminescence
ACKNOWLEDGMENT
Prof. Martin R. Bryce is aknowledged for use of his potentiostat at
Durham University UK. This work was supported by the Engineer-
ing and Physical Sciences Research Council (grant no.
EP/M005143/1 and EP/S003126/1) and the European Research
Council (ERC). D.C. and S.T.E.J. acknowledge support from the
Royal Society (grant nos. UF130278 and RG140472). B.H.D.
acknowledges support from the EPSRC Cambridge NanoDTC
(grant no. EP/L015978/1).
and Amplified Spontaneous Emission from
a Thermally
Activated Delayed Fluorescent Near-Infrared Emitter. Nat.
Photonics 2018, 12, 98–104.
(17)
(18)
(19)
Sun, K.; Chu, D.; Cui, Y.; Tian, W.; Sun, Y.; Jiang, W. Near-
Infrared Thermally Activated Delayed Fluorescent Dendrimers
for the Efficient Non-Doped Solution-Processed Organic Light-
Emitting Diodes. Org. Electron. physics, Mater. Appl. 2017, 48,
389–396.
Ni, F.; Wu, Z.; Zhu, Z.; Chen, T.; Wu, K.; Zhong, C.; An, K.;
Wei, D.; Ma, D.; Yang, C. Teaching an Old Acceptor New Tricks:
Rationally Employing 2,1,3-Benzothiadiazole as Input to Design
REFERENCES
(1)
(2)
(3)
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. All-Organic
Thermally Activated Delayed Fluorescence Materials for Organic
Light-Emitting Diodes. Nat. Rev. Mater. 2018, 3, 18020.
Wong, M. Y.; Zysman-Colman, E. Purely Organic Thermally
Activated Delayed Fluorescence Materials for Organic Light-
Emitting Diodes. Adv. Mater. 2017, 29, 1605444.
Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.;
Chi, Z.; Aldred, M. P. Recent Advances in Organic Thermally
Activated Delayed Fluorescence Materials. Chem. Soc. Rev.
2017, 46, 915–1016.
a
Highly Efficient Red Thermally Activated Delayed
Fluorescence Emitter. J. Mater. Chem. C 2017, 5, 1363–1368.
Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae,
Y.; Shibata, T.; Adachi, C. Anthraquinone-Based Intramolecular
Charge-Transfer Compounds: Computational Molecular Design,
Thermally Activated Delayed Fluorescence, and Highly Efficient
Red Electroluminescence. J. Am. Chem. Soc. 2014, 136, 18070–
18081.
(20)
Wang, S.; Cheng, Z.; Song, X.; Yan, X.; Ye, K.; Liu, Y.; Yang,
G.; Wang, Y. Highly Efficient Long-Wavelength Thermally
(4)
Ai, X.; Evans, E. W.; Dong, S.; Gillett, A. J.; Guo, H.; Chen, Y.;
Hele, T. J. H.; Friend, R. H.; Li, F. Efficient Radical-Based Light-
ACS Paragon Plus Environment