Organic Letters
Letter
Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520. (d) Kuninobu,
Y.; Iwanaga, T.; Omura, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52,
4431. (e) Murai, M.; Matsumoto, K.; Okada, R.; Takai, K. Org. Lett.
2014, 16, 6492.
change of the solution from blue to yellow. In contrast, the
regioisomer 1-arylazulene 7b′ did not show such behavior, which
clearly implies the utility of the current regioselective
functionalization at the 2-position of the azulene ring. These
differences can be explained by the perturbation of the π-
conjugation upon the formation of the azulenium cation. It is
known that protonation of azulene derivatives occurs at the 1-
and/or 3-position on the electron-rich five-membered ring.
Therefore, the structure of 1-arylazulene 7b′ might not be
effective for the conjugation since it cannot retain the planar
structure after the protonation.
In conclusion, a novel straightforward functionalization of C−
H bonds at the 2-position of azulene based on regioselective
dehydrogenative silylation has been described. The current
method provides a practical route for the construction of
azulene’s uniquely polarized π-system, which is difficult to access
by conventional approaches.
(7) Murai, M.; Takami, K.; Takai, K. Chem.Eur. J. 2015, 21, 4566.
(8) Cheng, C.; Harwig, J. F. J. Am. Chem. Soc. 2015, 137, 592.
(9) For intermolecular dehydrogenative silylation without any
directing groups, see: (a) Gustavson, W. A.; Epstein, P. S.; Curtis, M.
D. Organometallics 1982, 1, 884. (b) Sakakura, T.; Tokunaga, Y.;
Sodeyama, Y.; Tanaka, M. Chem. Lett. 1987, 2375. (c) Ishikawa, M.;
Okazaki, S.; Naka, A.; Sakamoto, H. Organometallics 1992, 11, 4135.
(d) Uchimaru, Y.; El Sayed, A. M. M.; Tanaka, M. Organometallics 1993,
12, 2065. (e) Djurovich, P. I.; Dolich, A. R.; Berry, D. H. J. Chem. Soc.,
Chem. Commun. 1994, 1897. (f) Ezbiansky, K.; Djurovich, P. I.;
LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. Organometallics
1998, 17, 1455. (g) Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005,
127, 5022. (h) Murata, M.; Fukuyama, N.; Wada, J.-i.; Watanabe, S.;
Masuda, Y. Chem. Lett. 2007, 36, 910. (i) Cheng, C.; Hartwig, J. F.
Science 2014, 343, 853. (j) Cheng, C.; Hartwig, J. F. J. Am. Chem. Soc.
2014, 136, 12064.
(10) Other transition-metal complexes, including RhCl(PPh3)3,
[Rh(OAc)2]2, Re2(CO)10, Ru3(CO)12, and Ir4(CO)12, did not promote
the desired reaction, and most of azulene was recovered.
(11) Disproportionation of 1e to 2 via the exchange of the methyl and
3,5-di(trifluoromethyl)phenyl groups was not observed under the
current conditions, which implies that the disproportionation occurred
before dehydrogenative silylation of the C−H bond.
(12) The reaction of guaiazulene with triethylsilane under the reaction
conditions noted in Table 1, entry 5, afforded the corresponding 2-
silylazulene as a single regioisomer in 22% yield.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, spectroscopic data for all new
1
compounds, and copies of H and 13C NMR spectra. This
material is available free of charge via the Internet at http://pubs.
AUTHOR INFORMATION
Corresponding Authors
■
(13) For a review, see: Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236.
(14) (a) Sibbald, P. A.; Rosewall, C. F.; Swartz, R. D.; Michael, F. E. J.
Am. Chem. Soc. 2009, 131, 15945. (b) Hickman, A. J.; Sanford, M. S. ACS
Catal. 2011, 1, 170.
Notes
The authors declare no competing financial interest.
(15) The reaction of Ir−Cl with H−SiR3 to generate Ir−H species via
oxidative addition followed by reductive elimination of Cl−SiR3 has
ACKNOWLEDGMENTS
■
been reported. See: Esteruelas, M. A.; Olivan
2013, 52, 12108.
́ ́
, M.; Velez, A. Inorg. Chem.
This work was financially supported by a Grant-in-Aid (No.
26248030) from MEXT, Japan, and the MEXT program for
promoting the enhancement of research universities. We
gratefully thank Mr. Shinji Iba and Takahisa Sakae (Okayama
University) for HRMS measurements.
(16) For theoretical studies on the mechanism of iridium-catalyzed
intramolecular dehydrogenative silylation of C−H bonds, see: (a) Parija,
A.; Sunoj, R. B. Org. Lett. 2013, 15, 4066. The alternative mechanism via
oxidative addition or σ-bond metathesis of Ir−(SiEt3)3 with Ar−H,
which is generally proposed for the iridium-catalyzed borylation of the
C−H bond, cannot be ruled out. See: (b) Mkhalid, I. A. I.; Barnard, J. H.;
Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(c) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
(17) Kunkely, H.; Vogler, A. Inorg. Chem. Commun. 2006, 9, 830.
(18) Nielsen, L.; Skrydstrup, T. J. Am. Chem. Soc. 2008, 130, 13145.
(19) For representative works, see: (a) Hatanaka, Y.; Hiyama, T.
Synlett 1991, 845. (b) Hiyama, T.; Hatanaka, Y. Pure Appl. Chem. 1994,
66, 1471. (c) Katayama, H.; Taniguchi, K.; Kobayashi, M.; Sagawa, T.;
Minami, T.; Ozawa, F. J. Organomet. Chem. 2002, 645, 192. (d) Hiyama,
T. J. Organomet. Chem. 2002, 653, 58. (e) Nakao, Y.; Imanaka, H.;
Sahoo, A. K.; Yada, A.; Hiyama, T. J. Am. Chem. Soc. 2005, 127, 6952.
(f) Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012,
41, 1845.
REFERENCES
(1) Nozoe, T. Pure Appl. Chem. 1972, 28, 239.
■
(2) (a) Noll, G.; Daub, J.; Lutz, M.; Rurack, K. J. Org. Chem. 2011, 76,
̈
4859. (b) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14,
1580. (c) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.; Ohba,
Y. Org. Lett. 2012, 14, 2316. (d) Xia, J.; Capozzi, B.; Wei, S.; Strange, M.;
Batra, A.; Moreno, J. R.; Amir, R. J.; Amir, E.; Solomon, G. C.;
Venkataraman, L.; Campos, L. M. Nano Lett. 2014, 14, 2941.
(3) (a) Yokoyama, R.; Ito, S.; Watanabe, M.; Harada, N.; Kabuto, C.;
Morita, N. J. Chem. Soc., Perkin Trans. 1 2001, 2257. (b) Ito, S.; Nomura,
A.; Morita, N.; Kabuto, C.; Kobayashi, H.; Maejima, S.; Fujimori, K.;
Yasunami, M. J. Org. Chem. 2002, 67, 7295. (c) Zhang, J.; Petoud, S.
Chem.Eur. J. 2008, 14, 1264.
(20) 2-Silylazulene 2 can be also utilized as a coupling partner to afford
7a in 66% yield by the reaction with iodobenzene.
(4) (a) Nozoe, T.; Seto, S.; Matsumura, S.; Murase, Y. Bull. Chem. Soc.
Jpn. 1962, 35, 1179. (b) McDonald, R. N.; Richmond, J. M.; Curtis, J. R.;
Petty, H. E.; Hoskins, T. L. J. Org. Chem. 1976, 41, 1811.
(21) For 7b: λmax = 297 nm (ε = 2.7 × 104), 306 nm (ε = 2.7 × 104), 367
nm (ε = 0.48 × 104), 385 nm (ε = 0.57 × 104). For 7b′: λmax = 302 (ε =
1.7 × 104), 370 (ε = 0.48 × 104).
(5) (a) Kurotobi, K.; Miyauchi, M.; Takakura, K.; Murafuji, T.;
Sugihara, Y. Eur. J. Org. Chem. 2003, 3663. (b) Fujinaga, M.; Murafuji,
T.; Kurotobi, K.; Sugihara, Y. Tetrahedron 2009, 65, 7115. (c) Zhao, L.;
Bruneau, C.; Doucet, H. Chem. Commun. 2013, 49, 5598. (d) Dyker, G.;
(22) For recent examples, see: (a) Murai, M.; Ku, S.-Y.; Treat, N. D.;
Robb, M. J.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 3753.
(b) Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S., Jr; Chabinyc, M. L.;
Hawker, C. J. Chem. Sci. 2014, 5, 4483.
Borowski, S.; Heiermann, J.; Korning, J.; Opwis, K.; Henkel, G.;
̈
Kockerling, M. J. Organomet. Chem. 2000, 606, 108.
̈
(6) (a) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem.
Soc. 2010, 132, 14324. (b) Kuninobu, Y.; Yoshida, T.; Takai, K. J. Org.
Chem. 2011, 76, 7370. (c) Kuninobu, Y.; Yamauchi, K.; Tamura, N.;
D
Org. Lett. XXXX, XXX, XXX−XXX