2932 Hanif et al.
Asian J. Chem.
TABLE-9
THEORETICAL RESULTS FOR ELECTRODE REACTIONS INVOLVING ELECTRON
TRANSFER IN CH2Cl2 at 25 °C (PROTONATING AGENT = BENZOIC ACID)
Zhet (cm sec-1)
λ1SCF-UHF
λο (e.v)
∆G°th (e.v)
Compound
q1
q2
w
kths,h (cm sec-1)
1,2-DNB
ε= 5.46
εο = 8.93
1,3-DNB
ε= 5.46
εο = 8.93
1,4-DNB
ε = 5.46
εo = 8.93
-0.371
-0.371
-0.258
-0.258
0.482
0.593
0.205
0.232
1.599
0.566
0.076
0.119
4843
-0.312
-0.312
-0.376
-0.376
0.492
0.606
0.134
0.162
26.34
08.74
0.042
0.062
0.000
0.129
4843
4843
-0.312
-0.312
-0.338
-0.338
0.488
0.601
0.210
0.236
1.350
0.477
TABLE-10
THEORETICAL RESULTS FOR ELECTRODE REACTIONS INVOLVING ELECTRON
TRANSFER IN CH2CL2 AT 25 °C (PROTONATING AGENT = SALICYLIC ACID)
Zhet (cm sec-1)
λ1SCF-UHF
λο (e.v)
∆G°th (e.v)
Compound
q1
q2
w
kths,h (cm sec-1)
1,2-DNB
ε= 5.46
εο = 8.93
1,3-DNB
ε= 5.46
εο = 8.93
1,4-DNB
ε = 5.46
εo = 8.93
-0.371
-0.371
0.076
-0.258
-0.258
0.119
0.485
0.596
0.206
0.233
1.550
0.544
4843
0.042
0.062
-0.370
-0.370
-0.260
-0.260
0.000
0.129
4843
4843
0.482
0.592
0.131
0.159
29.09
09.87
-0.390
-0.390
-0.221
-0.221
0.481
0.591
0.208
0.234
1.440
0.514
8. A.S. Mendkovich, M.A. Syroeshkin, L.V. Mikhalchenko, A.I. Rusakov
and V.P. Gultyai, Russ. Chem. Bull., 57, 1492 (2008).
9. L.J. Núñez-Vergara, J.A. Squella, C. Olea-Azar, S. Bollo, P.A.
Navarrete-Encina and J.C. Sturm, Electrochim. Acta, 45, 3555 (2000).
10. D.H. Evans, Chem. Rev., 108, 2113 (2008).
11. N.G. Tsierkezos, J. Solution Chem., 36, 289 (2007).
12. N.A. Macías-Ruvalcaba, J.P. Telo and D.H. Evans, J. Electroanal.
Chem., 600, 294 (2007).
13. D.S. Silvester, A.J. Wain, L. Aldous, C. Hardacre and R.G. Compton,
J. Electroanal. Chem., 596, 131 (2006).
14. M. Mohammad and M.J. Aslam, J. Chem. Soc. Pak., 33, 12 (2011).
15. D.D. Perrin, Purification of Laboratory Chemicals, Pergamon Press,
Oxford/New York, edn 1 (1974).
16. Operating and Service Manual, Model 174A Polarographic Analyzer,
EG & G Princeton Applied Research, New Jersey, USA.
17. J.W. Ross, R.D. DeMars and I. Shain, Anal. Chem., 28, 1768 (1956).
18. D.O. Wipf and R.M. Wightman, Anal. Chem., 62, 98 (1990).
19. R.S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964).
20. D.T. Sawyer, Experimental Electrochemistry for Chemists, John Wiley
& Sons, p. 170 (1974).
21. C. Reichardt, Solvents and Solvent Effect in Organic Chemistry, Ch. 7,
VCH Publishers, Cambridge (1988).
22. N.E. Miller, M.C. Wander and R.J. Cave, J. Phys. Chem., 103, 1084
(1999).
in the literature. The digital simulation method based upon
cyclic voltammograms is used for the evaluation of hetero-
geneous rate constant ks,h. This method is found useful in the
determination of heterogeneous rate constant in the present
study since measurements are made at one scan rate only.
Theoretical heterogeneous rate constant ks,h is also calculated
using the Marcus theory with some modifications. Calculations
of the theoretical heterogeneous rate constant requires the
reorganization energy, λo, which in turn requires dielectric
constant of the solvent. However, it is found that the use of λo
calculated from effective dielectric constant (i.e. the dielectric
constant in the interfacial region) produces theoretical values
in good agreement with the experimental values obtained
through simulations. This strengthens our assumption that the
electron transfer takes place in the interfacial region. Thus the
validity of the use of modified Marcus theory is established
by agreement between theoretical and experimental ks,h. The
advantage of the theoretical calculations is that heterogeneous
rate constant can be calculated for those compounds for which
no experimental data is available.
23. D.H. Evans, Chem. Rev., 108, 2113 (2008).
24. Z.V. Todres, Ion-Radical Organic Chemistry: Principles and Applica-
tions, CRC Press, Taylor & Francis Group, Boca Raton, Fl., USA, edn 2
(2009).
25. M.J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984).
26. F. Booth, J. Chem. Phys., 19, 391 (1951).
27. J.M. Hale, in ed.: N.S. Hush, Reactions of Molecules at Electrodes,
Wiley Interscience, New York (1970).
28. D.R. Lide, Hand book of Organic Solvents, CRC Press Boca Roton,
Ann Arbor, London, p. 142 (1995).
29. A.J. Bard and L.R. Faulkner, Electrochemical Methods, John Wiley &
Sons, New York, edn 2 (2001).
30. D. Britz, Digital Simulation in Electrochemistry, Springer, Berlin (1981).
31. D.K. Gosser and P.H. Rieger, Anal. Chem., 60, 1159 (1988).
32. D.K. Gosser Jr., Cyclic Voltammetry, VCH, New York and Weinheim,
Germany, p. 275 (1993).
REFERENCES
1. A.S. Mendkovich, M.A. Syroeshkin, L.V. Mikhalchenko, M.N. Mikhailov,
A. Rusakov and V.P. Gultyai, Int. J. Electrochem., 1 (2011).
2. A.S. Mendkovich, M.A. Syroeshkin, L.V. Mikhalchenko, A.I. Rusakov
and V.P. Gultyai, Russ. Chem. Bull., 57, 1492 (2008).
3. E. Steudel, J. Posdorfer and R.N. Schindler, Electrochim. Acta, 40,
1587 (1995).
4. M.A. Syroeshkin, A.S. Mendkovich, L.V. Mikhalchenko, A.I. Rusakov
and V.P. Gul'tyai, Mendeleev Commun., 19, 258 (2009).
5. M.A. Syroeshkin,A.S. Mendkovich, L.V. Mikhal'chenko,A.I. Rusakov
and V.P. Gul'tyai, Russ. Chem. Bull., 58, 468 (2009).
6. V. Mikhalchenko,A.S. Mendkovich, M.A. Syroeshkin andV.P. Gul'tyai,
Mendeleev Commun., 19, 96 (2009).
7. M.A. Syroeshkin, M.N. Mikhailov,A.S. Mendkovich andA.I. Rusakov,
Russ. Chem. Bull., 58, 41 (2009).