Organic Letters
Letter
(5) Shu, Y.; Collis, G. E.; Dunn, C. J.; Kemppinen, P.; Winzenberg,
K. N.; Williamson, R. M.; Bilic, A.; Singh, T. B.; Bown, M.; McNeill, C.
R.; Thomsen, L. J. Mater. Chem. C 2013, 1, 6299−6307.
(6) Mishra, A.; Fischer, M. K. R.; Bauerle, P. Angew. Chem., Int. Ed.
̈
2009, 48, 2474−2499.
(7) Kim, B.-G.; Chung, K.; Kim, J. Chem. - Eur. J. 2013, 19, 5220−
5230.
(8) Snaith, H. J. Adv. Funct. Mater. 2010, 20, 13−19.
(9) Bazzan, G.; Deneault, J. R.; Kang, T.-S.; Taylor, B. E.; Durstock,
M. F. Adv. Funct. Mater. 2011, 21, 3268−3274.
(10) Listorti, A.; O’Regan, B.; Durrant, J. R. Chem. Mater. 2011, 23,
3381−3399.
(11) Gratzel, M. Acc. Chem. Res. 2009, 42, 1788−1798.
̈
Figure 3. I/V curve of F-TABTSi (9) deposition in scCO2 (14 MPa,
50 °C) using a multilayer photoanode architecture. The inserted
images show an uncoated and dye-coated TiO2 photoanode and
scCO2 reactor with a view of the photoanode through the sapphire
window.
(12) Zhang, L.; Cole, J. M. ACS Appl. Mater. Interfaces 2015, 7,
3427−3455.
(13) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.
Chem. Rev. 2010, 110, 6595−6663.
(14) O’Regan, B.; Xiaoe, L.; Ghaddar, T. Energy Environ. Sci. 2012, 5,
7203−7215.
(15) Wen, P.; Xue, M.; Ishikawa, Y.; Itoh, H.; Feng, Q. ACS Appl.
Mater. Interfaces 2012, 4, 1928−1934.
scCO2 process when compared with the alkyl analogue and
conventional organic dye soaking. A highly significant benefit of
the fluoroalkyl group is the enhanced dye durability in the
DSSC device. The use of fluoroalkyl groups may be beneficial
in the design of dyes in conventional and next generation redox
mediator DSSCs.28,29
(16) Chen, X.; Jia, C.; Wan, Z.; Feng, J.; Yao, X. Org. Electron. 2014,
15, 2240−2249.
(17) Stevens, L. A.; Goetz, K. P.; Fonari, A.; Shu, Y.; Williamson, R.
́
M.; Bredas, J.-L.; Coropceanu, V.; Jurchescu, O. D.; Collis, G. E. Chem.
Mater. 2015, 27, 112−118.
(18) Uam, H.-S.; Jung, Y.-S.; Jun, Y.; Kim, K.-J. J. Photochem.
Photobiol., A 2010, 212, 122−128.
ASSOCIATED CONTENT
* Supporting Information
(19) Maniam, S.; Holmes, A. B.; Krstina, J.; Leeke, G. A.; Collis, G. E.
Green Chem. 2011, 13, 3329.
■
S
́
(20) Gladysz, J. A.; Curran, D. P.; Horvath, I. Y. Handbook of
Fluorous Chemistry; Wiley-VCH: Weinheim, 2004.
The Supporting Information is available free of charge on the
(21) Marzari, G.; Durantini, J.; Minudri, D.; Gervaldo, M.; Otero, L.;
Fungo, F.; Pozzi, G.; Cavazzini, M.; Orlandi, S.; Quici, S. J. Phys. Chem.
C 2012, 116, 21190−21200.
Computational calculations, experimental procedures,
NMR data, CO2 solubilities data, electrochemical data,
and DSSC device fabrication methods (PDF)
(22) Yum, J.-H.; Hagberg, D. P.; Moon, S.-J.; Karlsson, K. M.;
Marinado, T.; Sun, L.; Hagfeldt, A.; Nazeeruddin, M. K.; Gratzel, M.
Angew. Chem., Int. Ed. 2009, 48, 1576−1580.
(23) Moon, S.-J.; Yum, J.-H.; Humphry-Baker, R.; Karlsson, K. M.;
̈
AUTHOR INFORMATION
Corresponding Author
Hagberg, D. P.; Marinado, T.; Hagfeldt, A.; Sun, L.; Gratzel, M.;
̈
■
Nazeeruddin, M. K. J. Phys. Chem. C 2009, 113, 16816−16820.
(24) Collis, G. E.; Burrell, A. K.; Scott, S. M.; Officer, D. L. J. Org.
Chem. 2003, 68, 8974−8983.
Notes
(25) Collis, G. E.; Burrell, A. K.; Blandford, E. J.; Officer, D. L.
Tetrahedron 2007, 63, 11141−11152.
The authors declare no competing financial interest.
(26) Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T. Angew.
Chem., Int. Ed. 2011, 50, 11433−11436.
ACKNOWLEDGMENTS
■
(27) Chen, C.; Yang, X.; Cheng, M.; Zhang, F.; Sun, L.
ChemSusChem 2013, 6, 1270−1275.
This work was funded by the CSIRO Future Manufacturing
Flagship (Post-doctoral Fellowship for S.M.), CSIRO Fellow-
Office of Chief Executive (OCE) Science Team (G.E.C., A.B.,
and A.B.H.). We thank Mr. Muhammad Kashif and Dr. Udo
Bach (Department of Materials Engineering, Monash Uni-
versity) for use of the screen-printing equipment and helpful
discussions.
(28) Sauvage, F.; Chhor, S.; Marchioro, A.; Moser, J.-E.; Gratzel, M. J.
̈
Am. Chem. Soc. 2011, 133, 13103−13109.
(29) Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.
Chem. Rev. 2015, 115, 2136−2173.
REFERENCES
■
593.
(1) Takimiya, K.; Osaka, I.; Nakano, M. Chem. Mater. 2014, 26, 587−
(2) Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.;
Blood-Forsythe, M. A.; Seress, L. R.; Roman-Salgado, C.; Trepte, K.;
́
Atahan-Evrenk, S.; Er, S.; Shrestha, S.; Mondal, R.; Sokolov, A.; Bao,
Z.; Aspuru-Guzik, A. Energy Environ. Sci. 2014, 7, 698−704.
(3) Shu, Y.; Mikosch, A.; Winzenberg, K. N.; Kemppinen, P.; Easton,
C. D.; Bilic, A.; Forsyth, C. M.; Dunn, C. J.; Singh, T. B.; Collis, G. E.
J. Mater. Chem. C 2014, 2, 3895−3899.
(4) Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.;
Shu, Y.; Singh, T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. Chem.
Commun. 2013, 49, 6307−6309.
D
Org. Lett. XXXX, XXX, XXX−XXX