2478
E. McCoy et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2475–2478
18. Compounds 11 and 13 were synthesized from the corre-
References and notes
sponding commercially available indole-3-carbaldehydes
as previously reported. (Harada, H.; Hirokawa, Y.;
Suzuki, K.; Hiyama, Y.; Oue, M.; Kawashima, H.;
Yoshida, N.; Furutani, Y.; Kato, S. Bioorg. Med. Chem.
Lett. 2003, 13, 1301.) Substrates 10 and 7 were synthesized
from the corresponding commercially available indoles as
previously described. (Chen, Z.; Cohen, M. P.; Fisher, M.
J.; Giethlen, B.; Gillig, J. R.; McCowan, J. R.; Miller, S.
C.; Schaus, J. M. Preparation of N-(2-arylethyl)benzyl-
amines as antagonists of the 5-HT6 receptor.: USA, 2002;
p 216.) Benzofuran (4) and benzothiophene (5) derivatives
were generated from reduction of the commercially
available nitrile compounds. (Shafiee, A.; Mohamadpour,
M. J. Heterocycl. Chem. 1978, 15, 481.) The pyrrole
ethanamine compound (16) was synthesized as described.
1
2
3
. van der Heijden, R.; Jacobs, D. I.; Snoeijer, W.; Didier,
H.; Verpoorte, R. Curr. Med. Chem. 2004, 11, 607.
. Treimer, J. F.; Zenk, M. H. Eur. J. Biochem. 1979, 101,
225.
. Mizukami, H.; Nordlov, H.; Lee, S.-L.; Scott, A. I.
Biochemistry 1979, 18, 3760.
. Treimer, J. F.; Zenk, M. H. FEBS Lett. 1979, 97, 159.
. Kutchan, T. M. Phytochemistry 1993, 32, 493.
. Gerasimenko, I.; Sheludko, Y.; Ma, X.; Stockigt, J. Eur.
J. Biochem. 2002, 269, 2204.
. Geerlings, A.; Ibanez, M. M.-L.; Memelink, J.; Van der
Heijden, R.; Verpoorte, R. J. Biol. Chem. 2000, 275, 3051.
. Pfitzner, U.; Zenk, M. H. Methods Enzymol. 1987, 136,
4
5
6
7
8
9
342.
(
Wasley, J. W. F.; Hamdan, A. Synth. Commun. 1985, 15,
1.) All other tryptamine analogs were commercially
available.
. Kutchan, T. M.; Hampp, N.; Lottspeich, F.; Beyreuther,
K.; Zenk, M. H. FEBS Lett. 1988, 237, 40.
7
1
0. Pennings, E. J.; van den Bosch, R. A.; van der Heijden, R.;
Stevens, L. H.; Duine, J. A.; Verpoorte, R. Anal. Biochem.
1
2
9. Samanani, N.; Liscombe, D. K.; Facchini, P. J. Plant J.
2
004, 40, 302.
1989, 176, 412.
0. Mewshaw, R. E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby, G.;
Spangler, T.; Scerni, R.; Smith, D.; Schechter, L. E.;
Andree, T. H. J. Med. Chem. 2004, 47, 3823.
1
1
1
1
1
1
1. McKnight, T. D.; Roessner, C. A.; Devagupta, R.; Scott,
A. I.; Nessler, C. Nucleic Acids Res. 1990, 18, 4939.
2. Bracher, D.; Kutchan, T. M. Arch. Biochem. Biophys.
2
2
1. Synthesis of these derivatives is described in Galan, M. C.;
O’Connor, S. E. Tetrahedron Lett. 2006, 47, 1563.
2. Secologanin was isolated from L. tatarica following a
modification of a described procedure (Kinast, G.; Tietze,
L. F. Chem. Ber. 1976, 109, 3640) Leaves and stems
1
992, 294, 717.
3. Roessner, C. A.; Devagupta, R.; Hasan, M.; Williams, H.
J.; Scott, I. A. Protein Expr. Purif. 1992, 3, 295.
4. Kutchan, T. M.; Bock, A.; Dittrich, H. Phytochemistry
1994, 35, 353.
(
100 g) of L. tatarica were ground in a blender with
5. de Waal, A.; Meijer, A. H.; Verpoorte, R. Biochem.
J. 1995, 306, 571.
methanol (200 mL). The slurry stood for 50 min and was
then filtered over cheesecloth. This process was repeated
until the pulp was a light brown color. The methanol
filtrate (1 L) was evaporated to dryness and the resulting
green syrup was subjected to silica gel column chroma-
6. Although a structure is not yet reported, the enzyme has
been crystallized. Koepke, J.; Ma, X.; Fritzsch, G.; Michel,
H.; Stoeckigt, J. Acta Crystallogr., Sect. D 2005, D61, 690.
7. The masses of product peaks that resulted from the
reaction of secologanin and the following amines were: 4
1
tography (CH Cl –CH OH, 9:1). Fractions containing
2
2
3
+
+
secologanin were pooled, concentrated, and the resulting
solid was further purified by C18 column chromatography
(H O–CH OH, 7:3) to yield purified secologanin (1 g).
2 3
NMR and mass spectral data matched previously reported
values.
(
[M+H] expect. 532.2, obsd 532.3); 5 ([M+H] expect.
+
48.2, obsd 548.3); 7 ([M+H] expect. 549.2, obsd 549.2); 8
5
(
+
[M+H] expect. 549.2, obsd 549.4); 9 ([M+H] expect.
+
+
49.2, obsd 549.2); 10 ([M+H] expect. 549.2, obsd 549.2);
5
+
1 ([M+H] expect. 545.2, obsd 545.2); 14 ([M+H]
+
1
expect. 545.2, obsd 545.4); 15 ([M+H] expect. 547.2,
+
2
2
2
2
2
3. Barleben, L.; Ma, X.; Koepke, J.; Peng, G.; Michel, H.;
Stoeckigt, J. Biochim. Biophys. Acta 2005, 1747, 89.
4. Roquebert, J.; Demichel, P. Eur. J. Pharmacol. 1984, 106,
+
obsd 547.4); 20 (both diastereomers) ([M+H] expect.
545.2, obsd 545.3). Product peaks that resulted from the
reaction of tryptamine and the following aldehydes were:
2
03.
+
4 ([M+H] expect. 545.3, obsd 545.7); 25 ([M+H]
+
5. Li, S.; Long, J.; Ma, Z.; Xu, Z.; Li, J.; Zhang, Z. Curr.
Med. Res. Opin. 2004, 20, 409.
6. Moreno, P. R. H.; Van der Heijden, R.; Verpoorte, R.
Plant Cell Tissue Org. Cult. 1995, 42, 1.
7. Substrate 7 ([M+H] expect. 369.4, obsd 369.5) and 11
2
expect. 557.2, obsd 557.2). Synthesis of authentic stan-
dards (diastereomeric mixtures) and evaluation of chem-
ical reaction rates was performed by reacting amine and
aldehyde substrates (20 mM concentration) under aque-
ous conditions (150 mM maleic acid, pH 2).
+
+
(
[M+H] expect. 365.4, obsd 365.5).