Inorganic Chemistry
Article
(18) Shimada, H.; Hirai, K.-I.; Simamura, E.; Pan, J. Mitochondrial
NADH−quinone oxidoreductase of the outer membrane Is
responsible for paraquat cytotoxicity in rat livers. Arch. Biochem.
Biophys. 1998, 351, 75−81.
(19) Zhao, Y.; Hu, Q.; Cheng, F.; Su, N.; Wang, A.; Zou, Y.; Hu, H.;
Chen, X.; Zhou, H.-M.; Huang, X.; Yang, K.; Zhu, Q.; Wang, X.; Yi, J.;
Zhu, L.; Qian, X.; Chen, L.; Tang, Y.; Loscalzo, J.; Yang, Y. SoNar, a
highly responsive NAD+/NADH sensor, allows high-throughput
metabolic screening of anti-tumor agents. Cell Metab. 2015, 21,
777−789.
(20) Li, J.; Tian, M.; Tian, Z.; Zhang, S.; Yan, C.; Shao, C.; Liu, Z.
Half-sandwich iridium(III) and ruthenium(II) complexes Containing
P∧P-chelating ligands: A new class of potent anticancer agents with
unusual redox features. Inorg. Chem. 2018, 57, 1705−1716.
(21) Li, J.; Guo, L.; Tian, Z.; Tian, M.; Zhang, S.; Xu, K.; Qian, Y.;
Liu, Z. Novel half-sandwich iridium(iii) imino-pyridyl complexes
showing remarkable in vitro anticancer activity. Dalton Trans 2017,
46, 15520−15534.
(22) Feng, Z.; Wang, H.; Wang, S.; Zhang, Q.; Zhang, X.; Rodal, A.
A.; Xu, B. Enzymatic assemblies disrupt the membrane and target
endoplasmic reticulum for selective cancer cell death. J. Am. Chem.
Soc. 2018, 140, 9566−9573.
(23) Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent probes for sensing
and imaging within specific cellular organelles. Acc. Chem. Res. 2016,
49, 2115−2126.
(24) Petersen, N. H. T.; Olsen, O. D.; Groth-Pedersen, L.; Ellegaard,
A.-M.; Bilgin, M.; Redmer, S.; Ostenfeld, M. S.; Ulanet, D.; Dovmark,
T. H.; Lønborg, A.; et al. Transformation-associated changes in
sphingolipid metabolism sensitize cells to lysosomal cell death
induced by inhibitors of acid sphingomyelinase. Cancer Cell 2013,
24, 379−393.
(25) Daum, S.; Reshetnikov, M. S. V.; Sisa, M.; Dumych, T.;
Lootsik, M. D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann,
M.; et al. Lysosome-targeting amplifiers of reactive oxygen species as
anticancer prodrugs. Angew. Chem., Int. Ed. 2017, 56, 15545−15549.
(26) Zhang, P.; Wang, Y.; Qiu, K.; Zhao, Z.; Hu, R.; He, C.; Zhang,
Q.; Chao, H. A NIR phosphorescent osmium(ii) complex as a
lysosome tracking reagent and photodynamic therapeutic agent.
Chem. Commun. 2017, 53, 12341−12344.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the University Research Development Program of
Shandong Province (J18KA082), the National Natural Science
Foundation of China (Grant No. 21671118) and the Taishan
Scholars Program for support.
REFERENCES
(1) Biot, C.; Franco
Synthesis and antifungal activity of a ferrocene−fluconazole analogue.
Bioorg. Med. Chem. Lett. 2000, 10, 839−841.
■
̧
is, N.; Maciejewski, L.; Brocard, J.; Poulain, D.
(2) Li, S.; Wang, Z.; Wei, Y.; Wu, C.; Gao, S.; Jiang, H.; Zhao, X.;
Yan, H.; Wang, X. Antimicrobial activity of a ferrocene-substituted
carborane derivative targeting multidrug-resistant infection. Biomate-
rials 2013, 34, 902−911.
́
(3) Quirante, J.; Dubar, F.; Gonzalez, A.; Lopez, C.; Cascante, M.;
́
Cortes, R.; Forfar, I.; Pradines, B.; Biot, C. Ferrocene−indole hybrids
for cancer and malaria therapy. J. Organomet. Chem. 2011, 696, 1011−
1017.
(4) Mahmoud, K. A.; Luong, J. H. T. Impedance method for
detecting HIV-1 protease and screening for its inhibitors using
ferrocene−peptide conjugate/Au nanoparticle/single-walled carbon
nanotube modified electrode. Anal. Chem. 2008, 80, 7056−7062.
̀
(5) Hillard, E.; Vessieres, A.; Thouin, L.; Jaouen, G.; Amatore, C.
Ferrocene-mediated proton-coupled electron transfer in a series of
ferrocifen-type breast-cancer drug candidates. Angew. Chem., Int. Ed.
2006, 45, 285−290.
(6) Ornelas, C. Application of ferrocene and its derivatives in cancer
research. New J. Chem. 2011, 35, 1973−1985.
(7) Liu, X. C.; Tang, Y. H.; He, X. D.; Ge, X. X.; Liu, J.; Meng, X. Y.;
Shao, M. X.; Jin, Y. M.; Tian, L. J.; Liu, Z. Triphenyltin(IV)
acylhydrazone compounds: Synthesis, structure and bioactivity. J.
Inorg. Biochem. 2019, 191, 194−202.
(8) Arjmand, F.; Parveen, S.; Tabassum, S.; Pettinari, C. Organo-tin
antitumor compounds: Their present status in drug development and
future perspectives. Inorg. Chim. Acta 2014, 423, 26−37.
(9) Basu Baul, T. S.; Dutta, D.; Duthie, A.; Rocha, B. G. M.; Guedes
da Silva, M. F. C.; Saurav, S.; Manna, S. K. Syntheses, structural
snapshots, solution redox properties, and cytotoxic performances of
designated ferrocene scaffolds appended with organostannyl(IV)
benzoates en route for human hepatic carcinoma. Organometallics
2018, 37, 2961−2979.
(10) Girasolo, M. A.; Attanzio, A.; Sabatino, P.; Tesoriere, L.;
Rubino, S.; Stocco, G. Organotin(IV) derivatives with 5,7-
disubstituted-1,2,4-triazolo[1,5-a]pyrimidine and their cytotoxic
activities: The importance of being conformers. Inorg. Chim. Acta
2014, 423, 168−176.
(11) Gielen, M.; Davies, A. G.; Pannell, K.; Tiekink, E. Tin
Chemistry: Fundamentals, Frontiers, and Applications; John Wiley &
Sons, Ltd.: Wiley, 2008.
(27) Grossi, M.; Morgunova, M.; Cheung, S.; Scholz, D.; Conroy, E.;
Terrile, M.; Panarella, A.; Simpson, J. C.; Gallagher, W. M.; O’Shea,
D. F. Lysosome triggered near-infrared fluorescence imaging of
cellular trafficking processes in real time. Nat. Commun. 2016, 7,
10855−10866.
̈
(28) Appel, A.; Kober, C.; Neumann, C.; Noth, H.; Schmidt, M.;
Storch, W. Synthesis and structure of tris(trialkylstannyl)- and
tris(dialkylhalostannyl)amines; stabilization of the Sn3N skeleton by
intramolecular Sn−X−Sn bridges. Chem. Ber. 1996, 129, 175−189.
(29) Liu, T.; Lai, L.; Song, Z.; Chen, T. A sequentially triggered
nanosystem for precise drug delivery and simultaneous inhibition of
cancer frowth, migration, and invasion. Adv. Funct. Mater. 2016, 26,
7775−7790.
(30) Santidrian, A. F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B. B.;
LeBoeuf, S. E.; Gay, L. J.; Yagi, T.; Felding-Habermann, B.
Mitochondrial complex I activity and NAD+/NADH balance regulate
breast cancer progression. J. Clin. Invest. 2013, 123, 1068−1081.
(31) Ma, K.; Fu, D.; Liu, Y.; Dai, R.; Yu, D.; Guo, Z.; Cui, C.; Wang,
L.; Xu, J.; Mao, C. Cancer cell targeting, controlled drug release and
intracellular fate of biomimetic membrane-encapsulated drug-loaded
nano-graphene oxide nanohybrids. J. Mater. Chem. B 2018, 6, 5080−
5090.
(32) He, L.; Li, Y.; Tan, C. P.; Ye, R. R.; Chen, M. H.; Cao, J. J.; Ji,
L. N.; Mao, Z. W. Cyclometalated iridium(iii) complexes as lysosome-
targeted photodynamic anticancer and real-time tracking agents.
Chem. Sci. 2015, 6, 5409−5418.
(33) Liu, L.; Zhang, Z.; Xing, D. Cell death via mitochondrial
apoptotic pathway due to activation of Bax by lysosomal photo-
damage. Free Radical Biol. Med. 2011, 51, 53−68.
́
(12) Berger, F.; Ramírez-Hernandez, M. a. H.; Ziegler, M. The new
life of a centenarian: Signalling functions of NAD(P). Trends Biochem.
Sci. 2004, 29, 111−118.
́
́
(13) Virag, L.; Szabo, C. The therapeutic potential of poly(ADP-
Ribose) polymerase inhibitors. Pharmacol. Rev. 2002, 54, 375−429.
(14) Ying, W.; Garnier, P.; Swanson, R. A. NAD+ repletion prevents
PARP-1-induced glycolytic blockade and cell death in cultured mouse
astrocytes. Biochem. Biophys. Res. Commun. 2003, 308, 809−813.
(15) Ying, W.; Alano, C. C.; Garnier, P.; Swanson, R. A. NAD+ as a
metabolic link between DNA damage and cell death. J. Neurosci. Res.
2005, 79, 216−223.
(16) Ying, W. NAD+ and NADH in brain functions, brain diseases
and brain aging. Front. Biosci., Landmark Ed. 2007, 12, 1863−1888.
(17) Ying, W. NAD+/NADH and NADP+/NADPH in cellular
functions and cell death: Regulation and biological consequences.
Antioxid. Redox Signaling 2008, 10, 179−206.
H
Inorg. Chem. XXXX, XXX, XXX−XXX