Article
Macromolecules, Vol. 43, No. 10, 2010 4509
synthesized in this work displays amphiphilic properties that
would result in self-assembly in selective solvents. However,
the hydrolyzed block copolymer after drying is difficult to be
redissolved or form stable dispersion in many solvents. The
only solvent we have found is DMSO, but the dissolving
should be performed at a temperature higher than 80 °C. We
hereby give only preliminary results on the aggregation of
PVAc-b-PVNDc in solution and bulk state as a demonstra-
tion of successful block copolymer synthesis.
PVAc-b-PVNDc is sonicated and then stirred in acetone, a
selective solvent for PVAc segment. The gel-like polymer
readily forms a more homogeneous dispersion with opale-
scence, which is indicative of micelle formation. The result-
ing dispersion is filtered using a PTFE syringe filter (pore
size: 0.45 μm) before investigation by DLS. As shown in
Figure 14, the hydrodynamic radius (Rh) of the micelles is 44
and 27 nm, respectively, for PVAc(18000)-b-PVNDc(12200)
and PVAc(11200)-b-PVNDc(10200) with narrow distribu-
tions. These values are smaller than the chain lengths of the
block copolymers at fully extended conformation. However,
the copolymer PVAc(11200)-b-PVNDc(38300) does not form
any stable dispersion in acetone. It is dissolved in good solvent
such as THF but immediately precipitates upon addition of
acetone, possibly because of longer block of PVNDc.
The bulk property of the block copolymers is investigated
using DSC. The results are shown in Figure 15 together with
those of hompolymers PVAc and PVNDc. The block copoly-
mer clearly displays two glass-transition temperatures (Tg) at
around 0 and 42 °C, corresponding to the segments of PVNDc
and PVAc, respectively. This demonstrates that microphase
separation occurred in the bulk sample of block copolymer.
For the hydrolyzed products, PVOH-b-PVNDc, a melting
peak can be clearly seen at ∼215 °C, which is slightly lower
than that of PVOH homopolymer (Figure 15b). It can be
concluded that the domain of PVOH after phase separation
crystallizes into less perfect morphology.
spectra of block copolymer before and after hydrolysis; 1H
NMR of PVAc with low molecular weight (2400 g/mol). This
material is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) (a) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le,
T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad,
G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559–
5562. (b) Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. PCT Int.
Appl. WO 98/01478, 1998. (c) Rizzardo, E.; Thang, S. H.; Moad, G.
PCT Int. Appl. WO 99/05099, 1998.
(2) Here are some examples: (a) Chong, Y. K.; Le, T. P. T.; Moad, G.;
Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, 2071–2074.
(b) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad,
G.; Postma, A.; Thang, S. H. Macromolecules 2000, 33, 243–245. (c)
Stenzel-Rosenbaum, M.; Davis, T. P.; Chen, V.; Fane, A. G. J. Polym.
Sci., Part A: Polym. Chem. 2001, 39, 2777–2783. For reviews see: (d)
Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 2008, 49, 1079–1131.
(e) Favier, A.; Charreyre, M. Macromol. Rapid Commun. 2006, 27,
653–692.
(3) (a) Charmot, D.; Corpart, P.; Adam, H.; Zard, S. Z.; Biadatti, T.;
Bouhadir, G. Macromol. Symp. 2000, 150, 23–32. (b) Corpart, P.;
Charmot, D.; Biadatti, T.; Zard, S. Z.; Michelet, D. PCT Int. Appl. WO
98/58974, 1998.
(4) For a review, see: Perrier, S.; Takolpuckdee, P. J. Polym. Sci., Part
A: Polym. Chem. 2005, 43, 5347–5393.
(5) (a) Destarac, M.; Brochon, C.; Catala, J.-M.; Wilczewska, A.;
Zard, S. Z. Macromol. Chem. Phys. 2002, 203, 2281–2289. (b)
Destarac, M.; Bzducha, W.; Taton, D.; Gauthier-Gillaizeau, I.; Zard,
S. Z. Macromol. Rapid Commun. 2002, 23, 1049–1054. (c) Adamy,
M.; van Herk, A. M.; Destarac, M.; Monteiro, M. J. Macromolecules
2003, 36, 2293–2301.
(6) (a) Simms, R. W.;Davis, T. P.;Cunningham, M. F. Macromol. Rapid
Commun. 2005, 26, 592–596. (b) Boschmann, D.; Vana, P. Polym. Bull.
2005, 53, 231–242. (c) Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C.
Chem. Commun. 2004, 1546–1547. (d) Bernard, J.; Favier, A.; Davis,
T. P.; Barner-Kowollik, C.; Stenzel, M. H. Polymer 2006, 47, 1073–1080.
(7) Stenzel, M. H.; Cummins, L.; Roberts, G. E.; Davis, T. P.; Vana,
P.; Barner-Kowollik, C. Macromol. Chem. Phys. 2003, 204, 1160–
1168.
(8) Favier, A.; Barner-Kowollik, C.; Davis, T. P.; Stenzel, M. H.
Macromol. Chem. Phys. 2004, 205, 925–936.
(9) Bernard, J.; Favier, A.; Zhang, L.; Nilasaroya, A.; Davis, T. P.;
Barner-Kowollik, C.; Stenzel, M. H. Macromolecules 2005, 38,
5475–5484.
(10) Coote, M. L.; Radom, L. Macromolecules 2004, 37, 590–596.
(11) Fleet, R.; McLeary, J. B.; Grumel, V.; Weber, W. G.; Matahwa, H.;
Sanderson, R. D. Macromol. Symp. 2007, 255, 8–19.
(12) Russum, J. P.; Barbre, N. D.; Jones, C. W.; Schork, F. J. J. Polym.
Sci.; Part A: Polym. Chem. 2005, 43, 2188–2193.
(13) (a) Tong, Y.; Dong, Y.; Du, F.; Li, Z. Macromolecules 2008, 41,
7339–7346. (b) Tong, Y.; Wang, R.; Xu, N.; Du, F.; Li, Z. J. Polym.
Sci., Part A: Polym. Chem. 2009, 47, 4494–4504.
Conclusions
Radical polymerization of VAc in the presence of DIP under-
goes a RAFT process mediated by xanthate formed in situ via a
series of radical process. Two kinds of xanthates play the role of
RAFT/MADIX agents, that is, S-(cyano)isopropyl xanthate (3)
and diisopropyl dithiocarbonate (8). The presence of 8 is specific
for VAc, formed through intramolecular rearrangement of the
intermediate. After the induction period, the polymerization
proceeds in a controlled/“living” style because of the presence
of 3 and 8, the former being the main RAFT/MADIX agent.
Block copolymers are successfully synthesized by sequential
polymerization of VAc and VNDc. The length of blocks can be
tuned by changing the molar ratio of the second monomer,
VNDc, to the first block PVAc. The block copolymer is selec-
tively hydrolyzed to prepare well-defined PVOH-b-PVNDc pos-
sessing semicrystalline PVOH segment. The block copolymer
before hydrolysis aggregates into micelles in acetone, a selective
solvent of PVAc, and undergoes microphase separation in bulk
state. For the hydrolyzed block copolymer, the melting tempera-
ture is observed at 215 °C for PVOH domain.
(14) Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2009, 62,
1402–1472.
(15) Barner-Kowollik, C.; Perrier, S. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 5715–5723.
(16) (a) Vosloo, J. J.; De Wet-Roos, D.; Tonge, M. P.; Sanderson, R. D.
Macromolecules 2002, 35, 4894–4902. (b) Sprong, E.; De Wet-Roos,
D.; Tonge, M. P.; Sanderson, R. D. J. Polym. Sci., Part A: Polym.
Chem. 2003, 41, 223–235.
(17) Bouhadir, G.; Legrand, N.; Quiclet-Sire, B.; Zard, S. Z. Tetrahe-
dron Lett. 1999, 40, 277–280.
(18) Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.;
Rizzardo, E. Tetrahedron Lett. 1999, 40, 2435–2438.
(19) Zhu, J.; Zhu, X.; Cheng, Z.; Liu, F.; Lu, J. Polymer 2002, 43, 7037–
7042.
(20) Liu, X.; Zhang, G.; Li, B.; Bai, Y.; Pan, D.; Li, Y. Eur. Polym. J.
2008, 44, 1200–1208.
(21) (a) Niwa, M.; Matsumoto, T.; Shimada, Y.; Matsui, Y. Sci. Eng.
Rev. Doshisha Univ. 1986, 26, 219. (b) Niwa, M.; Matsumoto, T.;
Izumi, H. J. Macromol. Sci., Chem. 1987, 24, 567–585. (c) Niwa, M.;
Sako, Y.; Shimizu, M. J. Macromol. Sci., Chem. 1987, 24, 1315–1332.
(22) Lalevee, J.; El-Roz, M.; Allonas, X.; Fouassier, J. P. J. Polym. Sci.;
Part A: Polym. Chem. 2007, 45, 2436–2442.
Acknowledgment. This work is subsidized by NSFC
(20574009) and the National Basic Research Program of China
(2005CB623800). J.H. thanks the helpful discussions with Pro-
fessor Ewald Daltrozzo on the measurements and results of
NMR and MS spectroscopies.
Supporting Information Available: GC-MS of compound 3;
the complete fragmentation scheme of 8 (P300) and 6 (P254); IR