M. A. Fernández-Zúmel, C. Buron, K. Severin
FULL PAPER
Hutchings, C. Luján, P. Quayle, Tetrahedron Lett. 2008, 49,
1352–1356; f) R. N. Ram, N. Kumar, Tetrahedron Lett. 2008,
49, 799–802; g) J. A. Bull, M. G. Hutchings, P. Quayle, Angew.
Chem. 2007, 119, 1901; Angew. Chem. Int. Ed. 2007, 46, 1869–
1872; h) A. J. Clark, J. V. Geden, S. Thom, P. Wilson, J. Org.
Chem. 2007, 72, 5923–5926; i) J. M. Muñoz-Molina, A. Cabal-
lero, M. M. Díaz-Requejo, S. Trofimenko, T. R. Belderraín,
P. J. Pérez, Inorg. Chem. 2007, 46, 7725–7730; j) C. V. Stevens,
E. Van Meenen, K. G. R. Masschelein, Y. Eeckhout, W.
Hooghe, B. DЈhondt, V. N. Nemykin, V. V. Zhdankin, Tetrahe-
dron Lett. 2007, 48, 7108–7111.
[13]
Commercial Mn is protected by an oxide layer, see: K. Takai,
T. Ueda, T. Hayashi, T. Moriwake, Tetrahedron Lett. 1996, 37,
7049–7052.
II
[14]
[15]
Activated Mn*, which is prepared by reduction of Mn salts,
can react with a variety of organyl halides (see ref.[12]).
For selected examples, see: a) J. Y. Kang, B. T. Connell, J. Am.
Chem. Soc. 2010, 132, 7826–7827; b) K. C. MacLeod, J. L.
Conway, B. O. Patrick, K. M. Smith, J. Am. Chem. Soc. 2010,
132, 17325–17334; c) K. C. MacLeod, B. O. Patrick, K. M.
Smith, Organometallics 2010, 29, 6639–6641; d) K. Namba, J.
Wang, S. Cui, Y. Kishi, Org. Lett. 2005, 7, 5421–5424; e) M.
Lombardo, S. Morganti, S. Licciulli, C. Trombini, Synlett 2003,
43–46; f) A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996, 118,
12349–12357; g) A. Fürstner, N. Shi, J. Am. Chem. Soc. 1996,
118, 2533–2534.
[4]
For selected examples, see: a) R. P. Nair, T. H. Kim, B. J. Frost,
Organometallics 2009, 28, 4681–4688; b) R. J. Lundgren, M. A.
Rankin, R. McDonald, M. Stradiotto, Organometallics 2008,
27, 254–258; c) B. Dutta, E. Solari, R. Scopelliti, K. Severin,
Organometallics 2008, 27, 423–429; d) Y. Borguet, A. Richel,
S. Delfosse, A. Leclerc, L. Delaude, A. Demonceau, Tetrahe-
dron Lett. 2007, 48, 6334–6338; e) Y. Motoyama, S. Hanada,
K. Shimamoto, H. Nagashima, Tetrahedron 2006, 62, 2779–
2788; f) L. Quebatte, E. Solari, R. Scopelliti, K. Severin, Orga-
nometallics 2005, 24, 1404–1406; g) Y. Motoyama, S. Hanada,
S. Niibayashi, K. Shimamoto, N. Takaoka, H. Nagashima, Tet-
rahedron 2005, 61, 10216–10226; h) L. Quebatte, M. Haas, E.
Solari, R. Scopelliti, Q. T. Nguyen, K. Severin, Angew. Chem.
2005, 117, 1108; Angew. Chem. Int. Ed. 2005, 44, 1084–1088; i)
L. Quebatte, R. Scopelliti, K. Severin, Eur. J. Inorg. Chem.
2005, 3353–3358; j) L. Quebatte, R. Scopelliti, K. Severin, An-
gew. Chem. 2004, 116, 1546; Angew. Chem. Int. Ed. 2004, 43,
1520–1524; k) B. T. Lee, T. O. Schrader, B. Martín-Matute,
C. R. Kauffman, P. Zhang, M. L. Snapper, Tetrahedron 2004,
60, 7391–7396; l) O. Tutusaus, S. Delfosse, A. Demonceau,
A. F. Noels, C. Viñas, F. Teixidor, Tetrahedron Lett. 2003, 44,
8421–8425; m) O. Tutusaus, C. Viñas, R. Núñez, F. Teixidor,
A. Demonceau, S. Delfosse, A. F. Noels, I. Mata, E. Molins, J.
Am. Chem. Soc. 2003, 125, 11830–11831; n) B. de Clercq, F.
Verpoort, Tetrahedron Lett. 2002, 43, 4687–4690; o) F. Simal,
L. Wlodarczak, A. Demonceau, A. F. Noels, Eur. J. Org. Chem.
2001, 14, 2689–2695; p) F. Simal, L. Wlodarczak, A. De-
monceau, A. F. Noels, Tetrahedron Lett. 2000, 41, 6071–6074.
T. Pintauer, Eur. J. Inorg. Chem. 2010, 2449–2460.
a) M. A. Fernández-Zúmel, K. Thommes, G. Kiefer, A. Sienk-
iewicz, K. Pierzchala, K. Severin, Chem. Eur. J. 2009, 15,
11601–11607; b) J. M. Muñoz-Molina, T. R. Belderraín, P. J.
Pérez, Adv. Synth. Catal. 2008, 350, 2365–2372; c) J. Wolf, K.
Thommes, O. Briel, R. Scopelliti, K. Severin, Organometallics
2008, 27, 4464–4474; d) K. Thommes, B. Içli, R. Scopelliti, K.
Severin, Chem. Eur. J. 2007, 13, 6899–6907.
a) M. N. C. Balili, T. Pintauer, Inorg. Chem. 2010, 49, 5642–
5649; b) C. Ricardo, T. Pintauer, Chem. Commun. 2009, 3029–
3031; c) M. N. C. Balili, T. Pintauer, Inorg. Chem. 2009, 48,
9018–9026; d) W. T. Eckenhoff, S. T. Garrity, T. Pintauer, Eur.
J. Inorg. Chem. 2008, 563–571; e) W. T. Eckenhoff, T. Pintauer,
Inorg. Chem. 2007, 46, 5844–5846; f) L. Quebatte, K.
Thommes, K. Severin, J. Am. Chem. Soc. 2006, 128, 7440–
7441.
[16]
For selected examples, see: a) A. Gansäuer, M. Otte, L. Shi, J.
Am. Chem. Soc. 2011, DOI: 10.1021/ja109362m; b) A. Gan-
säuer, L. Shi, M. Otte, J. Am. Chem. Soc. 2010, 132, 11858–
11859; c) M. Paradas, A. G. Campaña, R. E. Estévez, L. A.
de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva, J. E. Oltra,
J. Org. Lett. 2009, 74, 3616–3619; d) P. Wipf, J. P. Maciejewski,
Org. Lett. 2008, 10, 4383–4386; e) A. Gansäuer, C.-A. Fan, F.
Keller, J. Keil, J. Am. Chem. Soc. 2007, 129, 3484–3485; f) A. F.
Barrero, M. M. Herrador, J. F. Quílez del Moral, P. Arteaga,
M. Akssira, F. El Hanbali, J. F. Arteaga, H. R. Diéguez, E. M.
Sánchez, J. Org. Chem. 2007, 72, 2251–2254; g) A. Gansäuer,
H. Blum, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849–
12859.
a) D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc.
2010, 132, 920–921; b) M. R. Prinsell, D. A. Everson, D. J.
Weix, Chem. Commun. 2010, 46, 5743–5745.
K. Thommes, M. A. Fernández-Zúmel, C. Buron, A. Godinat,
R. Scopelliti, K. Severin, Eur. J. Org. Chem. 2011, 249–255.
H. T. Bonge, B. Pintea, T. Hansen, Org. Biomol. Chem. 2008,
6, 3670–3672.
T. Nagano, J. Motoyoshiya, A. Kakehi, Y. Nishii, Org. Lett.
2008, 10, 5453–5456.
X.-Q. Zhu, H.-Y. Wang, J.-S. Wang, Y.-C. Liu, J. Org. Chem.
2001, 66, 344–347.
a) J.-B. Kim, I. Cho, Tetrahedron 1997, 53, 15157–15166; b)
P. Boldt, L. Schulz, U. Klinsmann, H. Köster, W. Thielecke,
Tetrahedron 1970, 26, 3591–3615.
A. S. Biland, S. Altermann, T. Wirth, ARKIVOC 2003, 6, 164–
169.
S. Araki, Y. Butsugan, J. Chem. Soc., Chem. Commun. 1989,
1286–1287.
a) A. O. Chagarovskiy, O. A. Ivanova, E. R. Rakhmankulov,
E. M. Budynina, I. V. Trushkov, M. Y. Melnikov, Adv. Synth.
Catal. 2010, 352, 3179–3184; b) J.-P. Qu, C. Deng, J. Zhou, X.-
L. Sun, Y. Tang, J. Org. Chem. 2009, 74, 7684–7689; c) J. Fang,
J. Ren, Z. Wang, Tetrahedron Lett. 2008, 49, 6659–6662; d)
O. A. Ivanova, E. M. Budynina, Y. K. Grishin, I. V. Trushkov,
P. V. Verteletskii, Eur. J. Org. Chem. 2008, 5329–5335; e) O. A.
Ivanova, E. M. Budynina, Y. K. Grishin, I. V. Trushkov, P. V.
Verteletskii, Angew. Chem. 2008, 120, 1123; Angew. Chem. Int.
Ed. 2008, 47, 1107–1110; f) Y.-B. Kang, X.-L. Sung, Y. Tang,
Angew. Chem. 2007, 119, 3992; Angew. Chem. Int. Ed. 2007,
46, 3918–3921.
E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353–
1364.
F. González-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kol-
otuchin, M. Soumeillant, Adv. Synth. Catal. 2008, 350, 813–
816.
S. R. Goudreau, D. Marcoux, A. B. Charette, J. Org. Chem.
2009, 74, 470–473.
For examples of sequential or tandem reactions involving a Ru-
catalyzed radical addition, see: a) Y. Borguet, X. Sauvage, G.
Zaragoza, A. Demonceau, L. Delaude, Beilstein J. Org. Chem.
2010, 6, 1167–1173; b) B. A. Seigal, C. Fajardo, M. L. Snapper,
J. Am. Chem. Soc. 2005, 127, 16329–16332; c) B. Schmidt, M.
[17]
[18]
[19]
[20]
[21]
[22]
[5]
[6]
[23]
[24]
[25]
[7]
[8]
[9]
T. Pintauer, W. T. Eckenhoff, C. Ricardo, M. N. C. Balili, A. B.
Biernesser, S. T. Noonan, M. T. Taylor, Chem. Eur. J. 2009, 15,
38–41.
a) R. Casolari, F. Felluga, V. Frenna, F. Ghelfi, U. M. Pagnoni,
A. F. Parsons, D. Spinelli, Tetrahedron 2011, 67, 408–416; b)
M. J. W. Taylor, W. T. Eckenhoff, T. Pintauer, Dalton Trans.
2010, 39, 11475–11482.
[26]
[27]
[10]
[11]
[12]
K. Thommes, G. Kiefer, R. Scopelliti, K. Severin, Angew.
Chem. 2009, 121, 8259; Angew. Chem. Int. Ed. 2009, 48, 8115–
8119.
[28]
[29]
Electrochemical redox potential for Mn+2/Mn0 is –1.03 V, see:
Handbook of Chemistry and Physics, 62nd ed., CRC, Boca Ra-
ton, FL, 1982.
J. M. Concellón, H. Rodríguez-Solla, V. del Amo, Chem. Eur.
J. 2008, 14, 10184–10191.
2276
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 2272–2277