6226 Biochemistry, Vol. 49, No. 29, 2010
Green et al.
the choline quaternary ammonium center (Figure 3A). We
hypothesized that mutation of these residues to alanine could
widen the narrow part of the tunnel and potentially allow the
enzyme to utilize choline analogues with larger quaternary
ammonium centers for the production of novel acetylcholine
analogues. Unfortunately, mutations at these positions mostly
abolish activity toward choline and all choline analogues tested
(Figure S1 of the Supporting Information). The characterization
of these constructs provides experimental support to validate the
role of these three amino acid residues in binding and keeping the
choline substrate in the hChAT active site tunnel.
In summary, we have presented evidence that, as in the
carnitine series (conversion of CrAT to CrOT and CPT), the
cosubstrate promiscuity of hChAT can be expanded from short-
to medium-chain (ChOT) and long-chain (ChPT) acyl-CoAs. In
addition to the previously mentioned E337 and C550 residues, we
have identified a novel amino acid residue, C551, critical to
dictating chain length specificity in hChAT. We have demon-
strated that the presence of at least one of two cysteine residues,
C550 or C551, is necessary for chain length specificity in hChAT.
We have also identified M84, Y436, and Y552 as critical amino
acid residues for binding and locking of choline and its analogues
into the active site tunnel of the hChAT enzyme. In conjunction
with our previously reported characterization of the substrate
promiscuity of hChAT-wt (26), this work sets the stage for the
production of libraries of novel acetylcholine analogues as
potential cholinesterase inhibitors.
7. Jogl, G., Hsiao, Y. S., and Tong, L. (2004) Structure and function of
carnitine acyltransferases. Ann. N.Y. Acad. Sci. 1033, 17–29.
8. Makar, T. K., Cooper, A. J., Tofel-Grehl, B., Thaler, H. T., and Blass,
J. P. (1995) Carnitine, carnitine acetyltransferase, and glutathione in
Alzheimer brain. Neurochem. Res. 20, 705–711.
9. Melegh, B., Seress, L., Bedekovics, T., Kispal, G., Sumegi, B.,
Trombitas, K., and Mehes, K. (1999) Muscle carnitine acetyltransfer-
ase and carnitine deficiency in a case of mitochondrial encephalomyo-
pathy. J. Inherited Metab. Dis. 22, 827–838.
10. DiDonato, S., Rimoldi, M., Moise, A., Bertagnoglio, B., and Uziel,
G. (1979) Fatal ataxic encephalopathy and carnitine acetyltransferase
deficiency: A functional defect of pyruvate oxidation? Neurology 29,
1578–1583.
11. Cai, Y., Cronin, C. N., Engel, A. G., Ohno, K., Hersh, L. B., and
Rodgers, D. W. (2004) Choline acetyltransferase structure reveals
distribution of mutations that cause motor disorders. EMBO J. 23,
2047–2058.
12. Govindasamy, L., Pedersen, B., Lian, W., Kukar, T., Gu, Y., Jin, S.,
Agbandje-McKenna, M., Wu, D., and McKenna, R. (2004) Structur-
al insights and functional implications of choline acetyltransferase.
J. Struct. Biol. 148, 226–235.
13. Kim, A. R., Rylett, R. J., and Shilton, B. H. (2006) Substrate binding
and catalytic mechanism of human choline acetyltransferase. Bio-
chemistry 45, 14621–14631.
14. Wu, D., Govindasamy, L., Lian, W., Gu, Y., Kukar, T., Agbandje-
McKenna, M., and McKenna, R. (2003) Structure of human carnitine
acetyltransferase. Molecular basis for fatty acyl transfer. J. Biol.
Chem. 278, 13159–13165.
15. Jogl, G., and Tong, L. (2003) Crystal structure of carnitine acetyl-
transferase and implications for the catalytic mechanism and fatty
acid transport. Cell 112, 113–122.
16. Jogl, G., Hsiao, Y. S., and Tong, L. (2005) Crystal structure of mouse
carnitine octanoyltransferase and molecular determinants of sub-
strate selectivity. J. Biol. Chem. 280, 738–744.
17. Hsiao, Y. S., Jogl, G., and Tong, L. (2004) Structural and biochemical
studies of the substrate selectivity of carnitine acetyltransferase.
J. Biol. Chem. 279, 31584–31589.
ACKNOWLEDGMENT
18. Hsiao, Y. S., Jogl, G., Esser, V., and Tong, L. (2006) Crystal structure
of rat carnitine palmitoyltransferase II (CPT-II). Biochem. Biophys.
Res. Commun. 346, 974–980.
19. Brown, N. F., Anderson, R. C., Caplan, S. L., Foster, D. W., and
McGarry, J. D. (1994) Catalytically important domains of rat carni-
tine palmitoyltransferase II as determined by site-directed mutagen-
esis and chemical modification. Evidence for a critical histidine
residue. J. Biol. Chem. 269, 19157–19162.
Prof. Brian H. Shilton (University of Western Ontario) is
acknowledged for the generous gift of the hChAT-containing
plasmid. We thank Dr. Tapan Biswas (University of Michigan)
for help in generating Figure 3 as well as for the gift of the Int-
pET19b-pps vector. We thank Dr. Mi Hee Lim for the use of
equipment.
20. Morillas, M., Clotet, J., Rubi, B., Serra, D., Asins, G., Arino, J., and
Hegardt, F. G. (2000) Identification of the two histidine residues
responsible for the inhibition by malonyl-CoA in peroxisomal carni-
tine octanoyltransferase from rat liver. FEBS Lett. 466, 183–186.
21. Morillas, M., Gomez-Puertas, P., Roca, R., Serra, D., Asins, G.,
Valencia, A., and Hegardt, F. G. (2001) Structural model of the
catalytic core of carnitine palmitoyltransferase I and carnitine octa-
noyltransferase (COT): Mutation of CPT I histidine 473 and alanine
381 and COT alanine 238 impairs the catalytic activity. J. Biol. Chem.
276, 45001–45008.
SUPPORTING INFORMATION AVAILABLE
A table of primers used in this study (Table S1), structures
of substrates and cosubstrates tested with the hChAT-M84A,
-Y436A, and -Y552A mutants (Figure S1), gel containing Ni(II)-
NTA-purified proteins (Figure S2), histograms of hChAT mu-
tants comparing the rates of different CoA derivatives (Figure
S3), and representative examples of kinetic curves (Figure S4).
This material is available free of charge via the Internet at http://
pubs.acs.org.
22. Morillas, M., Lopez-Vinas, E., Valencia, A., Serra, D., Gomez-
Puertas, P., Hegardt, F. G., and Asins, G. (2004) Structural model
of carnitine palmitoyltransferase I based on the carnitine acetyltrans-
ferase crystal. Biochem. J. 379, 777–784.
23. Cordente, A. G., Lopez-Vinas, E., Vazquez, M. I., Swiegers, J. H.,
Pretorius, I. S., Gomez-Puertas, P., Hegardt, F. G., Asins, G., and
Serra, D. (2004) Redesign of carnitine acetyltransferase specificity by
protein engineering. J. Biol. Chem. 279, 33899–33908.
REFERENCES
1. Whitehouse, P. J. (1998) The cholinergic deficit in Alzheimer’s disease.
J. Clin. Psychiatry 59 (Suppl. 13), 19–22.
24. Cordente, A. G., Lopez-Vinas, E., Vazquez, M. I., Gomez-Puertas, P.,
Asins, G., Serra, D., and Hegardt, F. G. (2006) Mutagenesis of
specific amino acids converts carnitine acetyltransferase into carnitine
palmitoyltransferase. Biochemistry 45, 6133–6141.
25. Cronin, C. N. (1998) Redesign of choline acetyltransferase specificity
by protein engineering. J. Biol. Chem. 273, 24465–24469.
26. Green, K. D., Fridman, M., and Garneau-Tsodikova, S. (2009)
hChAT: A tool for the chemoenzymatic generation of potential
acetyl/butyrylcholinesterase inhibitors. ChemBioChem 10, 2191–
2194.
2. Oda, Y. (1999) Choline acetyltransferase: The structure, distribution
and pathologic changes in the central nervous system. Pathol. Int. 49,
921–937.
3. Holt, D. J., Bachus, S. E., Hyde, T. M., Wittie, M., Herman, M. M.,
Vangel, M., Saper, C. B., and Kleinman, J. E. (2005) Reduced density
of cholinergic interneurons in the ventral striatum in schizophrenia:
An in situ hybridization study. Biol. Psychiatry 58, 408–416.
4. Massouh, M., Wallman, M. J., Pourcher, E., and Parent, A. (2008)
The fate of the large striatal interneurons expressing calretinin in
Huntington’s disease. Neurosci. Res. 62, 216–224.
5. Mallard, C., Tolcos, M., Leditschke, J., Campbell, P., and Rees, S.
(1999) Reduction in choline acetyltransferase immunoreactivity but
not muscarinic-m2 receptor immunoreactivity in the brainstem of
SIDS infants. J. Neuropathol. Exp. Neurol. 58, 255–264.
6. Jellinger, K. A. (2003) Rett Syndrome: An update. J. Neural Transm.
110, 681–701.
27. Biswas, T., and Tsodikov, O. V. (2008) Hexameric ring structure of
the N-terminal domain of Mycobacterium tuberculosis DnaB helicase.
FEBS J. 275, 3064–3071.
28. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R.
(1989) Site-directed mutagenesis by overlap extension using the
polymerase chain reaction. Gene 77, 51–59.