Please d Co hn eomt Ca do j mu s mt margins
Page 4 of 5
COMMUNICATION
ChemComm
5
6
C. A. Schoenbaum, D. K. Schwartz and J. W. Medlin, Acc.
DOI: 10.1039/C7CC06146C
Chem. Res., 2014, 47, 1438-1445.
T. Chen and V. O. Rodionov, ACS Catal., 2016, 6, 4025-4033.
7
8
P. Liu, R. Qin, G. Fu and N. Zheng, J. Am. Chem. Soc., 2017,
39, 2122-2131.
F. Zaera, Acc. Chem. Res., 2009, 42, 1152-1160.
1
9
1
1
1
0 A. J. Gellman, ACS Nano, 2010, 4, 5-10.
1 A. Baiker, Chem. Soc. Rev., 2015, 44, 7449-7464.
2 K. B. Vu, K. V. Bukhryakov, D. H. Anjum and V. O. Rodionov,
ACS Catal., 2015, 5, 2529-2533.
1
1
3 J. Hassan, M. Sévignon, C. Gozzi, E. Schulz and M. Lemaire,
Chem. Rev., 2002, 102, 1359-1469.
4 H. Lin and D. Sun, Org. Prep. Proced. Int., 2013, 45
.
Figure 3 Recycling of SBA-Au catalysts in UHC reaction of iodobenzene (120°C, 96 h in
air).
15 T. D. Nelson and R. D. Crouch, in Organic Reactions, John
Wiley & Sons, Inc., New York, 2004, vol. 63, pp. 265-555.
1
1
6 L. Yin and J. Liebscher, Chem. Rev., 2007, 107, 133-173.
7 C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C.
McGowan, Chem. Soc. Rev., 2014, 43, 3525-3550.
We examined the recyclability of some of the representative
AuNP catalysts from our library (Figure 3). For these experiments,
the catalysts were separated by centrifugation after each run, and
reused without any re-activation steps. The activity and selectivity
1
8 B. Karimi and F. Kabiri Esfahani, Chem. Commun., 2011, 47,
1
0452-10454.
19 K. Layek, H. Maheswaran and M. L. Kantam, Catal. Sci.
Technol., 2013, , 1147-1150.
3
of the unsupported Au101∙PPh
3
NPs, already unexceptional,
2
2
2
2
0 A. Monopoli, P. Cotugno, G. Palazzo, N. Ditaranto, B.
Mariano, N. Cioffi, F. Ciminale and A. Nacci, Adv. Synth.
Catal., 2012, 354, 2777-2788.
diminished dramatically after the first cycle. The supported SBA-Au
catalyst also lost the selectivity for the UHC product after just one
cycle, likely due to the leaching and aggregation of AuNPs. In
contrast, SBA-FC-S5-Au retained its selectivity for the
homocoupling product even after three 96-hour, 120°C reaction
cycles under oxidative conditions. While the activity of this catalyst
degraded due to aggregation of NPs (Figure S17, ESI), unsupported
thiolate-protected AuNPs undergo oxidation, loss of thiol ligands,
and aggregation on the timescale of hours at ambient conditions in
1 R. N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong, M.
Ehara, S. Karanjit and H. Sakurai, J. Am. Chem. Soc., 2012,
1
34, 20250-20253.
2 L. Zhang, A. Wang, J. T. Miller, X. Liu, X. Yang, W. Wang, L.
Li, Y. Huang, C.-Y. Mou and T. Zhang, ACS Catal., 2014,
546-1553.
3 S. K. Movahed, M. Fakharian, M. Dabiri and A. Bazgir, RSC
Adv., 2014, , 5243-5247.
24 G. Li, C. Liu, Y. Lei and R. Jin, Chem. Commun., 2012, 48
2005-12007.
4
,
1
4
3
7
,
air in the presence of halide anions.
1
In conclusion, we synthesized a set of AuNP catalysts supported
on SBA-type mesoporous supports modified with single-
component or mixed self-assembled monolayers. Some of these
monolayers featured “sticky” thiolate groups. AuNPs supported on
thiolated supports exhibited thermal stability well beyond that of
unsupported, thiol-protected AuNPs of similar size. The catalysts
supported by mixed thiol/fluorous monolayers exhibited
exceptional selectivity in Ullmann-type homocoupling of
iodobenzene, and remarkable stability under harsh reaction
conditions. Our approach provides an easy pathway for controlled
variation of particle-support interactions in libraries of supported
nanoparticle catalysts. Efforts to extend this strategy to other
supported NP catalysts, as well as to gain additional mechanistic
insights are currently underway in our laboratories.
2
2
2
2
2
5 W. Yao, W.-J. Gong, H.-X. Li, F.-L. Li, J. Gao and J.-P. Lang,
Dalton Trans., 2014, 43, 15752-15759.
6 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.
Chmelka and G. D. Stucky, Science, 1998, 279, 548-552.
7 S. Onclin, B. J. Ravoo and D. N. Reinhoudt, Angew. Chem.
Int. Ed., 2005, 44, 6282-6304.
8 M. E. McGovern, K. M. R. Kallury and M. Thompson,
Langmuir, 1994, 10, 3607-3614.
9 B. C. Bunker, R. W. Carpick, R. A. Assink, M. L. Thomas, M.
G. Hankins, J. A. Voigt, D. Sipola, M. P. de Boer and G. L.
Gulley, Langmuir, 2000, 16, 7742-7751.
3
3
0 A. Y. Fadeev and T. J. McCarthy, Langmuir, 2000, 16, 7268-
7
274.
1 X. Bulliard, A. Benayad, S.-G. Ihn, S. Yun, J.-H. Park, W. Choi,
Y. S. Choi and Y. Kim, RSC Adv., 2013, 3, 1112-1118.
32 W. W. Weare, S. M. Reed, M. G. Warner and J. E.
Hutchison, J. Am. Chem. Soc., 2000, 122, 12890-12891.
3
3
3 G. H. Woehrle, L. O. Brown and J. E. Hutchison, J. Am.
Chem. Soc., 2005, 127, 2172-2183.
4 T. Shimizu, T. Teranishi, S. Hasegawa and M. Miyake, J.
Phys. Chem. B, 2003, 107, 2719-2724.
Acknowledgements
This research was supported by King Abdullah University of
Science and Technology (KAUST).
3
3
5 R. H. Crabtree, Chem. Rev., 2012, 112, 1536-1554.
6 M. Şologan, D. Marson, S. Polizzi, P. Pengo, S. Boccardo, S.
Notes and References
Pricl, P. Posocco and L. Pasquato, ACS Nano, 2016, 10,
9
316-9325.
1
2
3
4
C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, Chem.
Rev., 2005, 105, 1025-1102.
3
7 M. Dasog and R. W. Scott, Langmuir, 2007, 23, 3381-3387.
P. Munnik, P. E. de Jongh and K. P. de Jong, Chem. Rev.,
2
015, 115, 6687-6718.
D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem. Int. Ed.,
005, 44, 7852–7872.
2
F. Gambinossi, S. E. Mylon and J. K. Ferri, Adv. Colloid
Interface Sci., 2015, 222, 332-349.
4
| Chem. Comm., 2017, 00, 1-3
This journal is © The Royal Society of Chemistry 2017
Please do not adjust margins