10.1002/anie.201810550
Angewandte Chemie International Edition
COMMUNICATION
[5]
[6]
D. V. Talapin, J. S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem.
Rev. 2010, 11, 389–458.
R. D. Harris, S. B. Homan, M. Kodaimati, C. He, A. B. Nepomnyashchii,
N. K. Swenson, S. C. Lian, R. Calzada, E. A. Weiss, Chem. Rev. 2016,
116, 12865–12919.
M. F. Kuehnel, K. L. Orchard, K. E. Dalle, E. Reisner, J. Am. Chem.
Soc. 2017, 139, 7217–7223.
S. C. Lian, M. S. Kodaimati, D. S. Dolzhnikov, R. Calzada, E. A. Weiss,
J. Am. Chem. Soc. 2017, 139, 8931–8938.
CO2 adsorption and activation on surface, which boosts the
overall photocatalytic performance (Figure S14). Notably, the
peak intensity variation for Ni:CdS QDs is substantially higher
than the other three catalysts, manifesting the higher activity of
Ni:CdS in photocatalytic CO2 reduction.
[7]
[8]
[9]
Electrocatalytic measurements (Figure 4c) show that
hydrogen evolution reaction (HER) on Ni:CdS is dramatically
lower than that by CdS QDs mixed with free Ni cations – a
similar situation to CdS-Ni in photocatalytic measurements. This
indicates that the doping of Ni sites into CdS lattice is a way to
suppress HER, most likely because the doped Ni sites can be
more affected by the electronic structure of CdS QDs. The
unique role of Ni species as catalytic centers is further proven by
control experiments using CdS shielding and in the presence of
free Ni2+ cations (Figure S21 and S22). It is evident that this
doping strategy is a prominent method for fixing metal cations
uniformly on surface of QDs and can be extended to other
divalent transition metals such as Fe2+ and Co2+ (Figure 4d).
D. A. Hines, P. V. Kamat, J. Phys. Chem. C 2013, 117, 14418–14426.
[10] P. K. Santra, P. V. Kamat, J. Am. Chem. Soc. 2012, 134, 2508–2511.
[11] D. J. Norris, A. L. Efros, S. C. Erwin, Science 2008, 319, 1776–1779.
[12] Y. Dong, J. Choi, H. K. Jeong, D. H. Son, J. Am. Chem. Soc. 2015, 137,
5549−5554.
[13] M. Luo, Y. Liu, J. Hu, H. Liu, J. Li, ACS Appl. Mater. Interf. 2012, 4,
1813–1821.
[14] H. M. Huang, B. Y. Dai, W. Wang, C. H. Lu, J. H. Kou, Y. R. Ni, L. Z.
Wang, Z. Z. Xu, Nano Lett. 2017, 17, 3803–3808.
[15] R. Shi, H. F. Ye, F. Liang, Z. Wang, K. Li, Y. X. Weng, Z. S. Lin, W. F.
Fu, C. M. Che, Y. Chen, Adv. Mater. 2018, 30, 1705941.
[16] T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrovic, D.
Volbers, R. Wyrwich, M. Doblinger, A. S. Susha, A. L. Rogach, F.
Jackel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013–1018.
[17] J. Zhao, M. A. Holmes, F. E. Osterloh, ACS Nano 2013, 7, 4316–4325.
[18] Z. J. Han, F. Qiu, R. Eisenberg, P. L. Holland, T. D. Krauss, Science
2012, 338, 1321–1324.
[19] X. Meng, Q. Yu, G. Liu, L. Shi, G. Zhao, H. Liu, P. Li, K. Chang, T. Kako,
J. Ye, Nano Energy 2017, 34, 524–532.
[20] S. P. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer, Nano Lett.
2002, 2, 817–822.
[21] B. M. Graff, B. P. Bloom, E. Wierzbinski, D. H. Waldeck, J. Am. Chem.
Soc. 2016, 138, 13260–13270.
[22] G. Zhao, Y. Sun, W. Zhou, X. Wang, K. Chang, G. Liu, H. Liu, T. Kako,
J. Ye, Adv. Mater. 2017, 29, 1703258.
[23] A. Nag, D. S. Chung, D. S. Dolzhnikov, N. M. Dimitrijevic, S.
Chattopadhyay, T. Shibata, D. V. Talapin, J. Am. Chem. Soc. 2012, 134,
13604–13615.
[24] G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K.
Chang, X. Meng, T. Kako, J. Ye, J. Am. Chem. Soc. 2016, 138, 9128–
9136.
[25] M. Han, Y. Luo, J. E. Moryl, R. M. Osgood Jr., J. G. Chen, Surf. Sci.
1998, 415, 251–263.
[26] P. V. Kamat, N. M. Dimitrijević, R. W. Fesseden, J. Phys. Chem. 1987,
91, 396–401.
In summary, we have successfully demonstrated that doping
QDs, the most common strategy applied to tune the
photophysical properties of QDs, can markedly reduce CO2 into
CO and CH4 with a nearly 100% selectivity, a TON of ~35 in
terms of Ni atoms and an excellent durability for more than 60 h.
The doped metal sites play a dual role in the photocatalytic
process – trapping photoexcited electrons at surface catalytic
sites and suppressing H2 evolution. This work is the first
experimental report that doping QDs with metal cations can lead
to efficient photocatalytic systems for reducing CO2 with high
selectivity and durability, which provides insights into
simultaneously maneuvering the two key steps – charge transfer
and separation, and surface reactions through
a single
[27] E. M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J. Phys. Chem.
C 2013, 117, 17666–17673.
[28] C. Amatore, J.-M. Savéant, J. Am. Chem. Soc. 1981, 103, 5021–5023.
[29] N. J. Firet, W. A. Smith, ACS Catal. 2017, 7, 606–612.
[30] W. G. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, J. Phys. Chem. C
2008, 112, 7710–7716.
component. It offers us a valid approach to earth-abundant
photocatalysts for CO2 photoreduction using visible light.
Experimental Section
See Supporting Information for material synthesis and characterization
methods.
Acknowledgements
This work was financially supported in part by National Key R&D
Program of China (2017YFA0207301), NSFC (21725102,
21471141, U1532135, 21701143, 21875235), CAS Key
Research Program of Frontier Sciences (QYZDB-SSW-SLH018),
and CAS Interdisciplinary Innovation Team.
Keywords: photocatalysis • quantum dots • catalytic sites •
doping • CO2 reduction
[1]
[2]
J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E.
Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B.
Bocarsly, Chem. Rev. 2015, 115, 12888–12935.
T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637–
638.
[3]
[4]
K. K. Sakimoto, A. B. Wong, P. Yang, Science 2016, 351, 74–77.
A. P. Alivisatos, Science 1996, 271, 933–937.
This article is protected by copyright. All rights reserved.