Letters
(2) Beaber, J. W.; Hochhut, B.; Waldor, M. K. SOS response
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 17 5411
(15) For purposes of clarity, the data for these nucleotides and a
variety of synthetic analogues are not shown; a full account of
the structural basis for nucleotide selectivity will be published
elsewhere.
(16) Watanabe, R.; Masui, R.; Mikawa, T.; Takamatsu, S.; Kato, R.;
et al. Interaction of Escherichia coli RecA protein with ATP and
its analogues. J. Biochem. (Tokyo) 1994, 116, 960-966.
(17) For a recent review, see: Specht, K. M.; Shokat, K. M. The
emerging power of chemical genetics. Curr. Opin. Cell Biol. 2002,
14, 155-159.
(18) Berger, M. D.; Lee, A. M.; Simonette, R. A.; Jackson, B. E.; Roca,
A. I.; et al. Design and evaluation of a tryptophanless RecA
protein with wild type activity. Biochem. Biophys. Res. Commun.
2001, 286, 1195-1203.
(19) Stole, E.; Bryant, F. R. Reengineering the nucleotide cofactor
specificity of the RecA protein by mutation of aspartic acid 100.
J. Biol. Chem. 1996, 271, 18326-18328.
(20) The S0.5 and Kd values reported for ATP binding range from 2.5
to 200 µM. See ref 9 and the following: Kowalczykowski, S. C.
Interaction of recA protein with a photoaffinity analogue of ATP,
8-azido-ATP: determination of nucleotide cofactor binding pa-
rameters and of the relationship between ATP binding and ATP
hydrolysis. Biochemistry 1986, 25, 5872-5881.
(21) Tonomura, Y.; Imamura, K.; Ikehara, M.; Uno, H.; Harada, F.
Interaction between synthetic ATP analogues and actomyosin
systems. IV. J. Biochem. (Tokyo) 1967, 61, 460-472. Cremo, C.
R. Fluorescent nucleotides: synthesis and characterization.
Methods Enzymol. 2003, 360, 128-177.
(22) Bunthof, C. J.; van Schalkwijk, S.; Meijer, W.; Abee, T.; Hugen-
holtz, J. Fluorescent method for monitoring cheese starter
permeabilization and lysis. Appl. Environ. Microbiol. 2001, 67,
4264-4271.
(23) Sedgwick, S. G.; Levine, A.; Bailone, A. Induction of recA+-
protein synthesis in Escherichia coli. Mol. Gen. Genet. 1978, 160,
267-276. Casaregola, S.; D’Ari, R.; Huisman, O. Quantitative
evaluation of recA gene expression in Escherichia coli. Mol. Gen.
Genet. 1982, 185, 430-439.
promotes horizontal dissemination of antibiotic resistance genes.
Nature 2004, 427, 72-74. Hastings, P. J.; Rosenberg, S. M.;
Slack, A. Antibiotic-induced lateral transfer of antibiotic resis-
tance. Trends Microbiol. 2004, 12, 401-404.
(3) Bisognano, C.; Kelley, W. L.; Estoppey, T.; Francois, P.; Schren-
zel, J.; et al. A RecA-LexA-dependent pathway mediates cipro-
floxacin-induced fibronectin binding in Staphylococcus aureus.
J. Biol. Chem. 2004, 279, 9064-9071.
(4) Miller, C.; Thomsen, L. E.; Gaggero, C.; Mosseri, R.; Ingmer,
H.; et al. SOS response induction by beta-lactams and bacterial
defense against antibiotic lethality. Science 2004, 305, 1629-
1631.
(5) Kline, K. A.; Sechman, E. V.; Skaar, E. P.; Seifert, H. S.
Recombination, repair and replication in the pathogenic Neis-
seriae: the 3 R’s of molecular genetics of two human-specific
bacterial pathogens. Mol. Microbiol. 2003, 50, 3-13.
(6) Casjens, S. Prophages and bacterial genomics: what have we
learned so far? Mol. Microbiol. 2003, 49, 277-300.
(7) Roca, A. I.; Singleton, S. F. Direct evaluation of a mechanism
for activation of the RecA nucleoprotein filament. J. Am. Chem.
Soc. 2003, 125, 15366-15375.
(8) Guex, N.; Peitsch, M. C. SWISS-MODEL and the Swiss-
PdbViewer: an environment for comparative protein modeling.
Electrophoresis 1997, 18, 2714-2723.
(9) For examples, see the following and references therein: (a)
Moreau, P. L.; Carlier, M. F. RecA protein-promoted cleavage
of LexA repressor in the presence of ADP and structural
analogues of inorganic phosphate, the fluoride complexes of
aluminum and beryllium. J. Biol. Chem. 1989, 264, 2302-2306.
(b) Lee, J. W.; Cox, M. M. Inhibition of recA protein promoted
ATP hydrolysis. 1. ATPγS and ADP are antagonistic inhibitors.
Biochemistry 1990, 29, 7666-7676.
(10) Menetski, J. P.; Kowalczykowski, S. C. Interaction of recA
protein with single-stranded DNA. Quantitative aspects of
binding affinity modulation by nucleotide cofactors. J. Mol. Biol.
1985, 181, 281-295.
(11) Story, R. M.; Steitz, T. A. Structure of the recA protein-ADP
complex. Nature 1992, 355, 374-376.
(12) Chene, P. ATPases as drug targets: learning from their struc-
ture. Nat. Rev. Drug Discovery 2002, 1, 665-673. Mao, L.; Wang,
Y.; Liu, Y.; Hu, X. Molecular determinants for ATP-binding in
proteins: a data mining and quantum chemical analysis. J. Mol.
Biol. 2004, 336, 787-807.
(24) Krise, J. P.; Stella, V. J. Prodrugs of phosphates, phosphonates,
and phosphinates. Adv. Drug Delivery Rev. 1996, 19, 287-310.
Schultz, C. Prodrugs of biologically active phosphate esters.
Bioorg. Med. Chem. 2003, 11, 885-898. Meier, C.; Ruppel, M.
F.; Vukadinovic, D.; Balzarini, J. “Lock-in”-cycloSal-pronucleo-
tidessa new generation of chemical Trojan horses? Mini-Rev.
Med. Chem. 2004, 4, 383-394. Peyrottes, S.; Egron, D.; Lefebvre,
I.; Gosselin, G.; Imbach, J. L.; et al. SATE pronucleotide
approaches: an overview. Mini-Rev. Med. Chem. 2004, 4, 395-
408. Drontle, D. P.; Wagner, C. R. Designing a pronucleotide
stratagem: lessons from amino acid phosphoramidates of anti-
cancer and antiviral pyrimidines. Mini-Rev Med Chem 2004, 4,
409-419.
(13) For examples concerning kinases, myosin, and kinesin, see: (a)
Shah, K.; Liu, Y.; Deirmengian, C.; Shokat, K. M. Engineering
unnatural nucleotide specificity for Rous sarcoma virus tyrosine
kinase to uniquely label its direct substrates. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 3565-3570. (b) Gillespie, P. G.; Gillespie,
S. K.; Mercer, J. A.; Shah, K.; Shokat, K. M. Engineering of the
myosin-ibeta nucleotide-binding pocket to create selective sen-
sitivity to N(6)-modified ADP analogs. J. Biol. Chem. 1999, 274,
31373-31381. (c) Kapoor, T. M.; Mitchison, T. J. Allele-specific
activators and inhibitors for kinesin. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 9106-9111.0
(25) Cox, M. M. Recombinational DNA repair of damaged replication
forks in Escherichia coli: questions. Annu. Rev. Genet. 2001,
35, 53-82.
(14) Kikugawa, K.; Iizuka, K.; Ichino, M. Platelet aggregation inhibi-
tors. 4. N6 -substituted adenosines. J. Med. Chem. 1973, 16,
358-364.
JM050113Z