Page 3 of 3
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
prepared by enzymatic resolution of the corresponding
alcohol.19 Treating alcohol 14 with two equivalents of acetate
18 and Hoveyda-Grubbs catalyst 19 led to the formation of
desired product 7 in moderate yield. Potential intramolecular
coordination of the homoallylic alcohol to the ruthenium
alkylidene may contribute to the moderate yield of this
transformation.20 The importance of such chelation has been
debated.21
DOI: 10.1039/C7CC08004B
K. Suenaga, Chem. Lett. 2012, 41, 165. (c) M. Morita, O. Ohno, T.
Teruya, T. Yamori, T. Inuzuka, and K. Suenaga, Tetrahedron
2012, 68, 5984. (d) O. Ohno, A. Watanabe, M. Morita, and K.
Suenaga, Chem. Lett. 2014, 43, 287.
T. Yonezawa, N. Mase, H. Sasaki, T. Teruya, S.-i. Hasegawa, B.-Y.
Cha, K. Yagasaki, K. Suenaga, K. Nagai, and J.-T. Woo, J. Cell.
Biochem. 2012, 113, 440.
2
I
3
4
M. Morita, H. Ogawa, O. Ohno, T. Yamori, K. Suenaga, and C.
Toyoshima, FEBS Lett. 2015, 589, 1406.
(a) H. Liu, R. C. Bowes, 3rd, B. van de Water, C. Sillence, J. F.
Nagelkerke, and J. L. Stevens, J. Biol. Chem. 1997, 272, 21751.
(b) C. Caspersen, P. S. Pedersen, and M. Treiman, J. Biol. Chem.
2000, 275, 22363.
P. Sawant, and M. E. Maier, Synlett 2011, 3002.
S. Chandrasekhar, G. Rajesh, and T. Naresh, Tetrahedron Lett.
2013, 54, 252.
O
OAc
Me
5 mol% 19
+
t-BuO
CH2Cl2, 40 ºC
Me
(S)-18
(2 equiv)
42%
OH
14
I
5
6
N
N
Mes
Mes
O
Ot-Bu
Cl
Me
Ru
7
8
Y. Tanabe, E. Sato, N. Nakajima, A. Ohkubo, O. Ohno, and K.
Suenaga, Org. Lett. 2014, 16, 2858.
(a) E. Sato, Y. Tanabe, N. Nakajima, A. Ohkubo, and K. Suenaga,
Org. Lett. 2016, 18, 2047. (b) S. Das, D. Paul, and R. K. Goswami,
Org. Lett. 2016, 18, 1908.
Cl
Me
19
i-PrO
OAc
OH
7
Scheme 3.
9
E. Sato, M. Sato, Y. Tanabe, N. Nakajima, A. Ohkubo, and K.
Suenaga, J. Org. Chem. 2017, 82, 6770.
Conclusions
10 E. R. Welin, A. A. Warkentin, J. C. Conrad, and D. W. C.
MacMillan, Angew. Chem. Int. Ed. 2015, 54, 9668.
11 K. Takai, K. Nitta, and K. Utimoto, J. Am. Chem. Soc. 1986, 108,
7408.
12 A. Yanagisawa, H. Nakashima, A. Ishiba, and H. Yamamoto, J.
Am. Chem. Soc. 1996, 118, 4723.
13 I. S. Kim, M.-Y. Ngai, and M. J. Krische, J. Am. Chem. Soc. 2008,
130, 14891.
14 J. P. Vigneron, M. Dhaenens, and A. Horeau, Tetrahedron 1973,
29, 1055.
In conclusion, we have successfully synthesized the C1–C13
fragment (7) of biselyngbyolides A and B in only 9 steps from
propionaldehyde. Our route relies on catalyst control for the
formation of the C3, C7, and C10 stereocenters, as well as the
C4–C5 double bond. This reliance on catalytic transformations
has allowed us to greatly minimize the use of protecting
groups and reduce the number of oxidation state changes.
Efforts are underway to use fragment 7 for the construction of
non-natural analogs of the biselyngbyolides. This will be
reported in due course.
15 For a thorough discussion of the mathematical basis behind the
Horeau principle, see: V. Rautenstrauch, Bull. Chim. Soc. Fr.
1994, 131, 515.
16 Selected examples of the Horeau principle applied to complex
molecule synthesis. (a) S. M. Canham, B. D. Hafensteiner, A. D.
Lebsack, T. L. May-Dracka, S. Nam, B. A. Stearns, and L. E.
Overman, Tetrahedron 2015, 71, 6424. (b) X. Han, and P. E.
Floreancig, Angew. Chem. Int. Ed. 2014, 53, 11075. (c) M. Burns,
S. Essafi, J. R. Bame, S. P. Bull, M. P. Webster, S. Balieu, J. W.
Dale, C. P. Butts, J. N. Harvey, and V. K. Aggarwal, Nature 2014,
513, 183. (d) Z. (A.) Fang, G. J. Clarkson, and M. Wills,
Tetrahedron Lett. 2013, 54, 6834. (e) J. A. Enquist, Jr., and B. M.
Stoltz, Nature 2008, 453, 1228.
17 For other examples of the Horeau principle being applied to Ir-
catalyzed allylations, see: (a) Z. A. Kasun, X. Gao, R. M. Lipinski,
and M. J. Krische, J. Am. Chem. Soc. 2015, 137, 8900. (b) I. Shin,
and M. J. Krische, Org. Lett. 2015, 17, 4686. (c) S. W. Kim, W.
Lee, and M. J. Krische, Org. Lett. 2017, 19, 1252.
18 (a) A. Wohlrab, R. Lamer, and M. S. VanNieuwenhze, J. Am.
Chem. Soc. 2007, 129, 4175. (b) A. K. Ghosh, and S. Kulkarni, S.
Org. Lett. 2008, 10, 3907.
Acknowledgements
We thank Texas Tech University for financial support of this project
and Materia, Inc. for generous donation of olefin metathesis
catalysts. NMR data was collected using instruments supported by
the NSF CRIF Program (CHE-1048553). We thank Prof. Michael
Krische (UT Austin) and Prof. David MacMillan (Princeton) for
helpful discussions and suggestions.
Conflicts of interest
There are no conflicts to declare.
Notes and references
† The diastereomeric purity of catalyst 12 was critical for
achieving high enantioselectivity. When we used catalyst 12 with
a 7.3:1 dr, we obtained 9 with ~85:15 er.
‡ We were unable to assign the configuration of the recovered
aldehyde.
19 S. Vrielynck, M. Vandewalle, A. M. García, J. L. Mascareñas, and
A. Mouriño, Tetrahedron Lett. 1995, 36, 9023.
20 For example: P. E. Standen and M. C. Kimber, Tetrahedron Lett.
2013, 54, 4098–4101.
1
(a) T. Teruya, H. Sasaki, K. Kitamura, T. Nakayama, and K.
21 M. Lautens and M. L. Maddess, Org. Lett. 2004, 6, 1883.
Suenaga, Org. Lett. 2009, 11, 2421. (b) M. Morita, O. Ohno, and
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins