10.1002/anie.201809059
Angewandte Chemie International Edition
COMMUNICATION
by-site level. The dataset produced herein represents a starting
point for these future efforts. Finally, we have demonstrated the
[10] C.M. Potel, M.H. Lin, A.J.R. Heck, S. Lemeer, Nature Methods 2018, 15,
187-190.
ability
to
detect
physiologically-relevant
changes
in
[11] P.V. Attwood, P.G. Besant, M.J. Piggott, Amino acids 2011, 40, 1035-
1051.
phosphoaspartic acid levels, distinct from protein level differences,
in the EnvZ/OmpR osmoregulatory pathway. This work is the first
to enable global, quantitative measurement of phosphoaspartate
modification dynamics in native proteome, which should be
broadly applicable to other organisms and biologic perturbations,
providing an unprecedented view of this elusive, yet critical,
signalling mechanism.
[12] M.M. Igo, A.J. Ninfa, T.J. Silhavy, Genes & development 1989, 3, 598-
605.
[13] J.W. Chang, G. Lee, J.S. Coukos, R.E. Moellering, Analytical chemistry
2016, 88, 6658-6661.
[14] Y. Zhang, J. Wang, M. Ding, Y. Yu, Nature methods 2013, 10, 981-984.
[15] A.E. Speers, B.F. Cravatt, Chemistry & biology 2004, 11, 535-546.
[16] M.L. Matthews, L. He, B.D. Horning, E.J. Olson, B.E. Correia, J.R.3rd.
Yates, P.E. Dawson, B.F. Cravatt, Nat Chem 2017, 9, 234-243.
[17] J.D. Hirsch, L. Eslamizar, B.J. Filanoski, N. Malekzadeh, R.P. Haugland,
J.M. Beechem, R.P. Haugland, Analytical biochemistry 2002, 308, 343-
357.
Acknowledgements
We thank M. Rust and G. Pattanayak for discussions surrounding
the manuscript, and R. Park for conversations about proteomic
analyses. We are grateful for financial support of this work from
the following: Kwanjeong Educational Fellowship (to G.L.); NIH
[18] H. Zhang, X.J. Li, D.B. Martin, R. Aebersold, Nature biotechnology 2003,
21, 660-666.
[19] D. Fermin, S.J. Walmsley, A.C. Gingras, H.W. Choi, A.I. Nesvizhskii,
Molecular & Cellular Proteomics 2013, 12, 3409-3419.
[20] A. Schmidt, K. Kochanowski, S. Vedelaar, E. Ahrne, B. Volkmer, L.
Callipo, K. Knoops, M. Bauer, R. Aebersold, M. Heinemann, Nature
biotechnology 2016, 34, 104-110.
2T32GM008720-16
(to
J.E.M.);
NIH
R00CA175399,
DP2GM128199-01, and 2R01CA093577-11 (to R.E.M.); the
Damon Runyon Cancer Research Foundation (DFS08-14 to
R.E.M.), and The University of Chicago.
[21] K. Yamamoto, K. Hirao, T. Oshima, H. Aiba, R. Utsumi, A. Ishihama, The
Journal of biological chemistry 2005, 280, 1448-1456.
[22] J. Delgado, S. Forst, S. Harlocker, M. Inouye, Molecular microbiology
1993, 10, 1037-1047.
Conflict of interest
[23] K.A. Presper, C.Y. Wong, L. Liu, N.D. Meadow, S. Roseman,
Proceedings of the National Academy of Sciences of the United States
of America 1989, 86, 4052-4055.
The authors declare no conflict of interest.
Keywords: Chemoproteomics • Two-component signalling •
[24] Y.L. Jo, F. Nara, S. Ichihara, T. Mizuno, S. Mizushima, The Journal of
biological chemistry 1986, 261, 15252-15256.
Response regulator • Phosphoaspartate modification
[25] H. Aiba, F. Nakasai, S. Mizushima, T. Mizuno, The Journal of biological
chemistry 1989, 264, 14090-14094.
[1]
[2]
C. Walsh, Posttranslational modification of proteins: expanding nature’s
inventory (Roberts and Co. Publishers, Englewood, Colo), 2006, pp. xxi,
490 p.
[26] L. Dayon, A. Hainard, V. Licker, N. Turck, K. Kuhn, D.F. Hochstrasser,
P.R. Burkhard, J.C. Sanchez, Analytical chemistry 2008, 80, 2921-2931.
[27] S.J. Cai, M. Inouye, The Journal of biological chemistry 2002, 277,
24155-24161.
J.V. Olsen, M. Mann, Molecular & cellular proteomics 2013, 12, 3444-
3452.
[28] T.P. Rkenes, T. Lamark, A.R. Strom, J Bacteriol 1996, 178, 1663-1670.
[29] O.B. Styrvold, P. Falkenberg, B. Landfald, M.W. Eshoo, T. Bjornsen, A.R.
Strom, J Bacteriol 1986, 165, 856-863.
[3]
[4]
P. Cohen. Trends Biochem Sci 2000, 25, 596-601.
G. Manning, D.B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam,
Science 2002, 298, 1912-1934.
[30] R.E. Moellering, B.F. Cravatt, Science 2013, 341, 549-553.
[31] B.T. Weinert, V. Iesmantavicius, S.A. Wagner, C. Scholz, B.
Gummesson, P. Bell, T. Nystrom, C. Choudhary, Molecular cell 2013, 51,
265-272.
[5]
[6]
[7]
J. Brognard, T. Hunter, Curr Opin Genet Dev 2011, 21, 4-11.
M. Mann, O.N. Jensen, Nature biotechnology 2003, 21, 255-261.
J.M. Kee, R.C. Oslund, D.H. Perlman, T.W. Muir, Nature Chemical
Biology 2013, 9, 416-421.
[32] R. Harmel, D. Fiedler, Nature chemical biology 2018, 14, 244-252.
[33] L. Rajeev, E.G. Luning, P.S. Dehal, M.N. Price, A.P. Arkin, A.
Mukhopadhyay, Genome Biol 2011, 12, R99.
[8]
[9]
A.M. Stock, V.L. Robinson, P.N. Goudreau, Annual review of
biochemistry 2000, 69, 183-215.
J.B. Stock, A.J. Ninfa, A.M. Stock, Microbiol Rev 1989, 53, 450-490.
This article is protected by copyright. All rights reserved.