Chemistry of Materials
Page 12 of 15
1
2
3
4
5
6
7
8
4f-electron binding energies of all lanthanide impurities in 150
different compounds, J. Lumin. 2013, 135, 93.
(32) D. Rudolph, D. Enseling, T. Jüstel and T. Schleid, Crystal
Structure and luminescence properties of the first hydride oxide
chloride with divalent europium: LiEu2HOCl2 Z. Anorg. Allg. Chem.
2017, 643, 1525.
(33) F. Gehlhaar, R. Finger, N. Zapp, M. Bertmer and H.
Kohlmann, LiSr2SiO4H, an air-stable hydride as host for Eu(II)
luminescence. Inorg. Chem. 2018, 57, 11851.
(34) J. Ueda, S. Matsuishi, T. Tokunaga and S. Tanabe,
Preparation, electronic structure of gadolinium oxyhydride and
low-energy 5d excitation band for green luminescence of Tb3+ ions,
J. Mater. Chem. C 2018, 6, 7541.
(35) M. D. Banus, R. W. Bragdon and A. A. Hinckley, Potassium,
rubidium and cesium borohydride, J. Am. Chem. Soc. 1954, 76,
3848.
(36) A. A. Coelho, Topas-Academic Version 5, Bruker AXS,
General profile and structure analysis software for powder
diffraction data, Karlsruhe.
(37) A. A. Coelho, Indexing of Powder Diffraction Patterns by
Iterative Use of Singular Value Decomposition. J. Appl. Crystallogr.
2003, 36, 86.
(38) D. Ravnsbæk, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F.
Besenbacher, J. Skibsted and T. R. Jensen, A series of mixed-metal
borohydrides, Angew. Chem. Int. Ed., 2009, 48, 6659.
(39) E. Grube, C. H. Olesen, D. B. Ravnsbæk and T. R. Jensen,
Barium borohydride chlorides: synthesis, crystal structure and
thermal properties, Dalton Trans., 2016, 45, 8291.
(40) D. B. Ravnsbæk, E. A. Nickels, R. Černý, C. H. Olesen, W. I.
F. David, P. P. Edwards, Y. Filinchuk and T. R. Jensen, Novel alkali
earth borohydrides Sr(BH4)2 and borohydride-chloride Sr(BH4)Cl,
Inorg. Chem., 2013, 52, 10877.
(41) M. B. Ley, S. Boulineau, R. Janot, Y. Filinchuk and T. R.
Jensen, New Li ion conductors and solid state hydrogen storage
materials: LiM(BH4)3Cl, M = La, Gd, J. Phys. Chem. C 2012, 116,
21267.
(42) K. T. Møller, M. B. Ley, P. Schouwink, R. Černý and T. R.
Jensen, Synthesis and thermal stability of perovskite alkali metal
strontium borohydrides, Dalton Trans., 2016, 45, 831.
(43) R. Shannon, Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides, Acta
Crystallogr., Sect. A 1976, 32, 751.
(44) D. H. Gahane, N. S. Kokode, B. M. Bahirwar, S. V. Moharil,
Luminescence of Eu2+ in some chlorides, Phys. Proc. 2012, 29, 42.
(45) V. L. Cherginets, N. V. Rebrova, A. Yu. Grippa, Yu. N.
Datsko, T. V. Ponomarenko, V. Yu. Pedash, N. N. Kosinov, V. A.
Tarasov, O. V. Zelenskaya, I. M. Zenya, and A. V. Lopin, Scintillation
properties of CsSrX3:Eu2+ (CsSr1−yEuyX3, X = Cl, Br; 0 ≤ y ≤ 0.05)
single crystals grown by the Bridgman method, Mater. Chem. Phys.
2014, 143, 1296.
(16) H. A. Höppe, H. Lutz, P. Morys, W. Schnick and A.
Seilmeier, Luminescence in Eu2+-doped Ba2Si5N8: Fluorescence,
thermoluminescence, and upconversion, J. Phys. Chem. Solids 2000,
61, 2000.
(17) N. Kunkel and T. Wylezich, Recent advances in rare
earth-doped hydrides, Z. Anorg. Allg. Chem. 2019, 645, 137-145.
(18) N. Kunkel, A. Meijerink and H. Kohlmann, Bright yellow
and green Eu(II) luminescence and vibronic fine structures in
LiSrH3, LiBaH3 and their corresponding deuterides, Phys. Chem.
Chem. Phys. 2014, 16, 4807.
(19) N. Kunkel, R. Böttcher, T. Pilling, H. Kohlmann and A.
Pöppl, Eu2+-containing luminescent perovskite-type hydrides
studied by electron paramagnetic resonance, Z. Phys. Chem. 2016,
230, 931.
(20) N. Kunkel, A. D. Sontakke, S. Kohaut, B. Viana and P.
Dorenbos, Thermally simulated luminescence and first-principle
study of defect configurations in the perovskite-type hydrides
LiMH3:Eu2+ (M = Sr, Ba) and the corresponding deuterides, J. Phys.
Chem. C, 2016, 120, 29141.
(21) G. Lefevre, A. Herfurth, H. Kohlmann, A. Sayede, Th.
Wylezich, S. Welinski, P. Duarte Vaz, S. F. Parker, J. F. Blach, Ph.
Goldner and N. Kunkel, Phonon-electron coupling in luminescent
europium doped hydride perovskites studied by luminescence
spectroscopy, inelastic neutron scattering, and first-principle
calculations, J. Phys. Chem. C 2018, 122, 10501
(22) T. Wylezich, R. Böttcher, A. Sontakke, V. Castaing, B.
Viana, A. Pöppl and N. Kunkel, Lanthanide ions as local probes in
ionic hydrides: A pulsed Electron Nuclear Double Resonance and
thermoluminescence study of Eu2+-doped hydride perovskites, J.
Phys. Chem. C 2019, 123, 5031.
(23) N. Kunkel, H. Kohlmann, A. Sayede, and M. Springborg,
Alkaline-Earth Metal Hydrides as Novel Host Lattices for EuII
Luminescence. Inorg. Chem., 2011, 50(13), 5873–5875.
(24) S. Marks, J. G. Heck, M. H. Habicht, P. Oña-Burgos, C.
Feldmann and P. W. Roesky, [Ln(BH4)2(THF)2] (Ln = Eu, Yb) - A
highly luminescent material. Synthesis, properties, reactivity, and
NMR studies, J. Am. Chem. Soc. 2012, 134, 16983.
(25) P. Schouwink, M. B. Ley, A. Tissot, H. Hagemann, T. R.
Jensen, L. Smrčok and R. Černý, Structure and properties of
complex hydride perovskite materials, Nat. Commun. 2014, 5,
5706.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černý, D. B.
Ravnsbæk, J. Filinchuk, M. Dornheim, F. Besenbacher and T. R.
Jensen, Metal borohydrides and derivatives – synthesis, structure
and properties, Chem. Soc. Rev. 2017, 46, 1565.
(27) N. Kunkel and H. Kohlmann, Ionic mixed hydride fluoride
compounds: Stabilities predicted by DFT, synthesis, and
luminescence of divalent europium, J. Phys. Chem. C 2016, 120,
10506.
(46) A. Yanase, and T. Kasuya, Magneto-Optical Effect due to
Eu2+ Ion, Suppl. Progr. Theor. Phys. 1970, 46, 388.
(28) C. Pflug, A. Franz and H. Kohlmann, Crystal structure and
europium luminescence of NaMgH3−xFx, J. Solid State Chem. 2018,
258, 391.
(47) H. A. Weakliem, Electronic Interactions in the 4f6 5d
Configuration of Eu2+ in Crystals, Phys. Rev. B 1972, 6, 2743.
(48) M. Suta, P. Larsen, F. Lavoie-Cardinal and C. Wickleder,
Photoluminescence of CsMBr3:Eu2+ (M=Mg, Ca, Sr)-A novel
strategy for the development of low-energy emitting phosphors, J.
Lumin., 2014, 149, 35.
(29) T. Wylezich, S. Welinski, M. Hoelzel, P. Goldner and N.
Kunkel, Lanthanide luminescence as a local probe in mixed anionic
hydrides – a case study on Eu2+-doped RbMgHxF3−x and KMgHxF3−x
,
J. Mater. Chem. C 2018, 6, 13006.
(49) M. Suta and C. Wickleder, Photoluminescence of
CsMI3:Eu2+ (M = Mg, Ca, and Sr) – a spectroscopic probe on
structural distortions, J. Mater. Chem. C, 2015, 3, 5233.
(50) K. Huang and A. Rhys, Theory of light absorption and
non-radiative transitions in F-centres, Proc. R. Soc. Lond. A, 1950,
204, 406.
(51) M. de Jong, L. Seijo, A. Meijerink and F. T. Rabouw,
Resolving the ambiguity in the relation between Stokes shift and
Huang-Rhys parameter, Phys. Chem. Chem. Phys., 2015, 17, 16959.
(52) P. Schouwink, H. Hagemann, J. P. Embs, V. D’Anna and R.
Černý, Di-hydrogen contact induced lattice instabilities and
(30) N. Kunkel, D. Rudolph, A. Meijerink, S. Rommel, R.
Weihrich, H. Kohlmann and T. Schleid, Green luminescence of
divalent europium in the hydride chloride EuHCl, Z. Anorg. Allg.
Chem. 2015, 641, 1220.
(31) D. Rudolph, T. Wylezich, A. D. Sontakke, A. Meijerink, P.
Goldner, P. Netzsch, H. A. Höppe, N. Kunkel and T. Schleid,
Synthesis and optical properties of the Eu2+-doped alkaline-earth
metal hydride chlorides AE7H12Cl2 (AE = Ca and Sr), J. Lumin. 2019,
209, 150.
ACS Paragon Plus Environment