252
LETTERS
SYNLETT
S.; Clarkson, S.; Grigg, R.; Sridharan, V. J. Chem. Soc., Chem.
Commun. 1995, 1135.
(3) Heck, R. F. Palladium Reagents in Organic Syntheses; Academic
Press: London, 1985. Tsuji, J. Synthesis with Palladium
Compounds; Springer-Verlag: Berlin, 1980. Harrington P. J.
Transition Metals in Total Synthesis; Wiley-Interscience: New
York, 1990.
(4) Heck, R. F. Org. React. 1982, 27, 345. de Meijere, A.; Meyer, F.
E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379. Negishi, E.;
Copéret, C.; Ma, S.; Liou, S. Y.; Liu, F. Chem. Rev. 1996, 96, 365.
(5) Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52,
4130. Abelman, M. M.; Overman, L. E.; Tran, V. D. J. Am. Chem.
Soc. 1990, 112, 6959. Negishi, E. I.; Zhnag, Y.; O'Connor, B.
Tetrahedron Lett. 1988, 29, 2915. Larock, R. C.; Song, H.; Baker,
B. E.; Gong, W. H. Tetrahedron Lett. 1988, 29, 2919. Neghishi, E.
I.; N'Guyen, T.; O'Connor, B. Heterocycles 1989, 28, 55.
Scheme 3
13
dig cyclization process . The intermediate 9 was transformed to the
desilylated compound 7 after purification by flash chromatography on
silica gel (80% yield from 8). We point out that when the non-silylated
compound 8’ was treated by Bu SnH, the corresponding cyclization
3
(6) Grigg, R.; Santhakumar, V.; Sridharan, V.; Stevenson, P.;
Teasdale, A.; Thornton-Pett, M.; Worakum, T. Tetrahedron 1991,
47, 9703.
product 7 was obtained with a yield of only 40%. The better yield
obtained for the transformation of 8 to 7 than for the transformation of
8’ to 7 is due to the fact that the TMS group stabilizes the radical
intermediate.
(7) Grigg, R.; Santhakumar, V.; Sridharan, V.; Thornton-Petit, M.;
Bridge, A. W. Tetrahedron 1993, 49, 5177.
(8) Grigg, R.; Stevenson, P.; Worakum, T. J. Chem. Soc., Chem.
Commun. 1984, 1073. Grigg, R.; Malone, J. F.; Mitchell, T. R. B.;
Ramassubbu, A.; Scott, R. M. J. Chem. Soc., Perkin Trans. I
1984, 1745. Grigg, R.; Stevenson, P.; Worakum, T. Tetrahedron
1988, 44, 2033. Grigg, R.; Sridharan, V.; Stevenson, P.;
Compound 7 was obtained in three steps from the N-Boc piperidone
with an overall yield of 54%, demonstrating that the process involving a
radical cyclization is more efficient than the process involving a Heck
reaction. The unprotected nitrogen in spiro[indoline-2,4'-piperidine] 7
and the exocyclic methylene group can be further modified to provide a
variety of structurally diverse analogs.
Sukirthalingam, S.; Worakum, T. Tetrahedron 1990, 46, 4003.
-1
(9) (7) C
H
N O ; M: 300 g.mol ; Rf (SiO , AcOEt/cyclohexane:
18 24
2
2
2
-1
1
15/85): 0.48. IR (nujol): 3350, 1680 (broad) cm . H NMR (300
In summary,
a
straightforward method (radical cyclization) to
MHz, CDCl ) δ: 7.35 (dd, J = 7.35 Hz, J = 1.47 Hz, 1H), 7.10
3
synthesize spiro[indoline-2,4'-piperidine] compounds has been
developed. Application of the methodology to other types of spiro
compounds is under further investigation.
(ddd, J = 7.35 Hz, J = 7.35 Hz and J = 1.47 Hz, 1H), 6.79-6.60 (m,
2H), 5.39 (s, 1H, C=CH ), 4.79 (s, 1H, C=CH ), 4.30 (s broad,
2
2
1H, NH), 4.20-4.05 (m, 2H), 2.99-2.81 (m, 2H), 1.66-1.55 (m,
13
4H), 1.44 (s, 9H, C(CH ) ). C NMR (75 MHz, CDCl ) δ: 153.7
3 3
3
(s, NCOO), 150.4 (s, C -NH), 130.0 (d), 126.7 (s), 121.1 (d),
Ar
Acknowledgment. We thank the Institut de Recherches Servier for
financial support.
118.8 (d), 110.5 (d), 99.4 (t, C=CH ), 79.5 (s, C-O), 63.3 (s, N-C),
2
40.4 (t, 2C, CH NCO), 37.9 (t, 2C, CH C), 28.3 (q, 3C, C(CH ) ).
2
2
3 3
+.
MS (EI; 70 eV) m/z: 300 (M , 57); 244 (31); 157 (61); 156 (85);
References and notes
144 (100); 143 (80); 57 (92).
(1) Chambers, M. S.; Baker, R.; Billigton, D. C.; Knight, A. K.;
Middlemiss, D. N.; Wong, E. H. F. J. Med. Chem. 1992, 35, 2033.
Evans, B. E.; Leighton, J. L.; Ritle, K. E.; Gilbert, K. F.; Lundell,
G. F.; Gould, N. P.; Hobbs, D. W.; DiPardo, R. M.; Veber, D. F.;
Pettibone, D. J.; Clineschmidt, B. V.; Anderson, P. S.; Freidinger,
R. M. J. Med. Chem. 1992, 35, 3919.
(10) HPLC: Lichroprep Si 60 (C); toluene/TEA: 100/0.25; 5.0 mL/
min; λ= 350 nm
(11) Beckwith, A. L. J.; Gara, W. B. J. Chem. Soc., Perkin Trans. II
1975, 593. Beckwith, A. L. J.; Gara, W. B. J. Chem. Soc., Perkin
Trans. II 1975, 795. Beckwith, A. L. J.; Meijs, G. F. J. Chem.
Soc., Chem. Commun. 1981, 136.
(2) Palmisano, G.; Annunziata, R.; Papeo, G.; Sisti, M. Tetrahedron:
Asymmetry 1996, 7, 1. Clark, A. J.; Davies, D. I.; Jones, K.;
Millbanks, C. J. Chem. Soc., Chem. Commun. 1994, 41. Grigg, R.;
Loganathan, V.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.;
Worakum, T. Tetrahedron 1996, 52, 11479. Grigg, R.; Sridharan,
V. Tetrahedron Lett. 1993, 34, 7471. Grigg, R.; Rasui, R.;
Redpath, J.; Wilson, D. Tetrahedron Lett. 1996, 37, 4609. Brown,
(12) Wolff, S.; Hoffman, H. M. R. Synthesis 1988, 760. Boger, D. L.;
Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 4796. Chen, H. S.;
Abraham, J. A. Tetrahedron Lett. 1996, 37, 5233. For
spiroheterocycles formation see: Jones, K.; Thompson, M.;
Wright, C. J. Chem. Soc., Chem. Commun. 1986, 115.
(13) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.