S. Lee et al. / Journal of Molecular Structure 996 (2011) 115–119
119
solvate acetonitrile (obs. 6.0%; calcd. 7.1%). This evaporation tem-
perature is relatively high compared with that of a known similar
compound [32], which is evidence of stronger interaction between
Ag(I) and acetonitrile. The skeletal 1D structure seems to be re-
tained, but at 210 °C, a drastic change corresponding to skeletal
collapse occurs. Specifically, after evacuation at 170 °C, its IR spec-
trum indicates the absence of acetonitrile. Furthermore, when the
desolvated skeletal species were immersed in acetonitrile at 25 °C,
the acetonitrile peaks reappeared. Such a fact indicates a reversible
association–dissociation of acetonitrile (Eq. (1), see Appendix A for
the XRD patterns). Those of
exhibits systematic structural change. Among various factors, the
anion- and solvent-coordinating natures are two significant factors
in construction of the skeletal structure and its dimensions. This
new coordinating nature of polyatomic anions can be used to
quantitatively predict the dimension of coordination polymers.
Acknowledgments
This work was supported by a National Research Foundation of
Korea (NRF) Grant funded by the Korean Government [MEST]
(2010-0026167).
þCH3CN
210ꢃ
C
(
ꢀCH3CN
½Ag2ðLÞðCH3CNÞ2ꢂðCO4Þ2
+ ½Ag2ðLÞꢂðClO4Þ2
Ag O
ð1Þ
ꢀꢀ!
Appendix A. Supplementary data
2
4 showed a similar thermal pattern. For 1, the acetone molecule
slowly evaporates in the wide temperature range of 80–120 °C in
contrast to 3, and the skeletal structure decomposes within a simi-
lar range. For 2, the water molecules evaporate in the range of 80–
120 °C, and the skeletal structure also decomposes, at around
210 °C (Appendix A).
Supplementary data associated with this article can be found, in
References
[1] S. Hasegawa, S. Hiroike, R. Matsda, S. Furikawa, K. Mochizuki, Y. Kinoshita, S.
Kitagawa, J. Am. Chem. Soc. 129 (2007) 607.
[2] P. Mahata, M. Prabu, S. Natarajan, Inorg. Chem. 47 (2008) 8451.
[3] O.-S. Jung, Y.J. Kim, Y.-A. Lee, J.K. Park, H.K. Chae, J. Am. Chem. Soc. 122 (2000)
9921.
3.4. Construction principle
[4] O.-S. Jung, Y.J. Kim, K.M. Kim, Y.-A. Lee, J. Am. Chem. Soc. 124 (2002) 7906.
[5] R.V. Slone, D.I. Yoon, R.M. Calhoun, J.T. Hupp, J. Am. Chem. Soc. 117 (1995)
11813.
[6] P.A. Gale, Coord. Chem. Rev. 213 (2001) 79.
[7] J.W. Lee, E.A. Kim, Y.J. Kim, Y.-A. Lee, Y. Pak, O.-S. Jung, Inorg. Chem. 44 (2005)
3151.
[8] B.I. Park, I.S. Chun, Y.-A. Lee, K.-M. Park, O.-S. Jung, Inorg. Chem. 45 (2006)
4310.
[9] M. Fujita, Chem. Soc. Rev. 27 (1998) 417.
[10] M. Albrecht, Angew. Chem., Int. Ed. 38 (1999) 3463.
[11] C.J. Jones, Chem. Soc. Rev. 27 (1998) 289.
[12] S.R. Batten, R. Robson, Angew. Chem., Int. Ed. 37 (1998) 1460.
[13] E.C. Constable, Tetrahedron 48 (1992) 10013.
[14] S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283
(1999) 1148.
[15] Y.-H. Kiang, G.B. Gardener, S. Lee, Z. Xu, J. Am. Chem. Soc. 122 (2000) 6871.
[16] D. Braga, F. Grepioni, Acc. Chem. Res. 33 (2000) 601.
[17] F.P. Schmidtchen, M. Berger, Chem. Rev. 97 (1997) 1609.
[18] R.E. Lapointe, G.R. Roof, K.A. Abboud, J. Klosin, J. Am. Chem. Soc. 122 (2000)
9560.
[19] O.-S. Jung, S.H. Park, K.M. Kim, H.G. Jang, Inorg. Chem. 37 (1998) 5781.
[20] Y.-A. Lee, S.A. Kim, S.M. Jung, O.-S. Jung, Y.H. Oh, Bull. Korean Chem. Soc. 25
(2004) 581.
[21] O.-S. Jung, Y.-A. Lee, Y.J. Kim, Chem. Lett. 31 (2002) 1096.
[22] O.-S. Jung, Y.-A. Lee, Y.J. Kim, J. Hong, Cryst. Growth Des. 2 (2002) 497.
[23] O.-S. Jung, Y.J. Kim, Y.-A. Lee, S.W. Kang, S.N. Choi, Cryst. Growth Des. 4 (2004)
23.
[24] O.-S. Jung, Y.J. Kim, Y.-A. Lee, K.-M. Park, S.S. Lee, Inorg. Chem. 42 (2003) 844.
[25] W. Bi, R. Cao, D. Sun, D. Yuan, X. Li, Y. Wang, X. Li, M. Hong, Chem. Commun.
(2004) 2104.
A combination of a variety of Ag(I) ion geometries and the flex-
ible tetradentate ligand seems to afford characteristic 1D and 2D
coordination structures. The reactions afford 2:1 (Ag(I):L) coordina-
tion polymers, because the ClOꢀ4 and BFꢀ4 have a very similar coor-
dinating nature [7,22,24]. Furthermore, all of the complexes
indicate that the pyridyl nitrogen of L is a better donor than the eth-
ylenediamine nitrogen of L: all of the Ag(I) ions are coordinated by
the pyridyl nitrogen donors rather than the ethylenediamine moi-
ety. The solvate molecules play a key role in Ag(I) ion geometry.
The basic coordination geometry is delicately dependent on the sol-
vent used. Solvate acetonitrile, water, and acetone molecules act as
a coordinating ligand rather than simple solvent. On the other hand,
formation of each skeleton seems to be dependent on the coordi-
nating nature of the anions. The interaction between Ag(I) and
ClO4 affords the 2D structure whereas the very weak interactions
between Ag(I) and the anions yield the 1D skeletal structures. For
1, the distances of Agꢁ ꢁ ꢁOClOꢀ3 (1) are 2.808(7) Å and 3.123(5) Å
(the sum of the van der Waals radii (3.20 Å) of Ag and O [29]), which
are stronger than the corresponding distances of the three 1D coor-
dination polymers. Thus, the ionic interaction significantly affects
the formation of the skeletal structure and its dimensions. The
argentophilic interaction exists in the 1D structure, whereas it does
not exist in 2D. The argentophilic interaction induces a sinusoidal
1D structure. The weak argentophilic, Agꢁꢁꢁanion, and Agꢁꢁꢁsolvent
interactions compete with each other, and therefore are very inte-
gral to the construction of coordination polymers using the highly
flexible organic spacer ligands. The ligand conformation difference
between the 1D and 2D structures exists in the solid state (Fig. 4).
[26] Z. Guo, R. Cao, X. Wang, H. Li, W. Yuan, G. Wang, H. Wu, J. Li, J. Am. Chem. Soc.
131 (2009) 6894.
[27] M. Munakata, L.P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem. 46 (1999) 173.
[28] G.M. Sheldrick, SHELXS-97: A Program for Structure Determination; University
of Göttingen, Germany, 1997; G.M. Sheldrick, SHELXL-97:
A Program for
Structure Refinement; University of Göttingen, Germany, 1997.
[29] J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 2nd
ed., Harper & Row, New York, 1978. p. 230.
[30] M.-L. Tong, X.-M. Chen, B.-H. Ye, L.-N. Ji, Angew. Chem., Int. Ed. 38 (1999)
2237.
4. Conclusions
[31] Q.-M. Wang, T.C.W. Mak, J. Am. Chem. Soc. 122 (2000) 7608.
[32] O.-S. Jung, S.H. Park, Y.J. Kim, Y.-A. Lee, H.G. Jang, U. Lee, Inorg. Chim. Acta 312
(2001) 93.
Our results demonstrate that the highly flexible multidentate
tetrakispyridine spacer is a fascinating molecular building unit that