2080
J . Org. Chem. 1999, 64, 2080-2084
High ly Ch em o- a n d Regioselective Th ioca r bon yla tion of
Con ju ga ted En yn es w ith Th iols a n d Ca r bon Mon oxid e Ca ta lyzed
by P a lla d iu m Com p lexes: An Efficien t a n d Atom -Econ om ica l
Access to 2-(P h en ylth ioca r bon yl)-1,3-d ien es
Wen-J ing Xiao, Giuseppe Vasapollo,† and Howard Alper*
Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
Received December 10, 1998
The reaction of 1, 3-conjugated enynes bearing a terminal triple bond with thiols and carbon
monoxide in the presence of catalytic quantities of Pd(OAc)2 (3 mol %) and 1,3-bis(diphenylphos-
phino)propane (6 mol %) in THF at 110 °C gave 2-(phenylthiocarbonyl)-1,3-dienes in moderate to
good yields. The thiocarbonylation takes place with high chemo- and regioselectivity, with the attack
by the phenylthiocarbonyl group occurring exclusively at carbon-2 of the 1,3-conjugated enyne.
In tr od u ction
propargyl or allylic alcohols in the presence of a pal-
ladium(0) catalyst to afford â-(arylthio)-R,â-unsaturated
lactones or â,γ-unsaturated thioesters, depending on the
Carbonylation chemistry is widely used in organic
synthesis in both academia and industry. Among numer-
ous methods for the introduction of a carbonyl moiety into
an organic molecule, the direct functionalization of a
substrate using carbon monoxide has attracted a great
deal of attention.1 The development of transition-metal-
catalyzed carbonylation involving the formation of a
thiocarbonyl unit and employing chalogen compounds as
substrates represents a challenging goal in organic
synthesis, because the strong thiophilicity of transition
metals2 may make catalytic reactions ineffective.3 Tran-
sition-metal-catalyzed reactions with thiols and carbon
monoxide have been investigated in our laboratories for
some time.4 For example, in 1985, we described the cobalt
carbonyl catalyzed desulfurization and carbonylation of
mercaptans to produce carboxylic esters (eq 1).4a The
reaction conditions (eq
2
and 3).5 Highly regio-
selective carbonylation reactions of thiols with allenes6
and acetylenes7 have been the subject of recent publica-
tions. In 1994, an excellent publication on the palladium-
catalyzed addition of thiophenol to conjugated enynes8
appeared by Backvall and co-workers (eq 4). Stimulated
latter process represented, to our knowledge, the first
effective catalytic carbonylation of organosulfur com-
pounds. Our group and others have subsequently dis-
covered a series of reactions in which chalcogen com-
pounds are used as substrates in transition-metal-
catalyzed reactions. For example, thiols react with
by these results, we reasoned that the thiocarbonylation
of conjugated enynes with thiols should take place,
producing the corresponding phenylthiocarbonyl-1,3-
dienes.
Sulfur-substituted dienes have been widely used in
Diels-Alder and other reactions.9 The sulfur-containing
group not only increases the reactivity of the diene but
also acts as a handle for further functional group
† Present address: Department of Material Science, University of
Lecce, Lecce, Italy.
(1) (a) Khumtaveeporn, K.; Alper, H. Acc. Chem. Res. 1995, 28, 414.
(b) Colquhoun, H. M.; Thompson, D. J .; Twigg, M. V. Carbonylation:
Direct Synthesis of Carbonyl Compounds; Plenum Press: New York,
1991.
(5) (a) Xiao, W.-J .; Alper, H. J . Org. Chem. 1997, 62, 3422. (b) Xiao,
W.-J .; Alper, H. J . Org. Chem. 1998, 63, 7939.
(2) Dubois, M. R. Chem. Rev. 1989, 89, 1.
(3) (a) Hegedus, L. L.; McCable, R. W. Catalyst Poisoning; Marcel
Dekker: New York, 1984. (b) Hutton, A. T. In Comprehensive Coor-
dination Chemistry; Wilkinson, G.; Gillard, R. D.; McCleverty, J . A.,
Eds.; Pergamon Press: Oxford, U.K., 1984; Vol. 5, p 1151.
(4) (a) Shim, S. C.; Antebi, S.; Alper, H. J . Org. Chem. 1985, 50,
147. (b) Antebi, S.; Alper, H. Tetrahedron Lett. 1985, 26, 2609. (c)
Antebi, S.; Alper, H. Organometallics 1986, 5, 596. (d) Antebi, S.; Alper,
H. Can. J . Chem. 1986, 64, 2010. (e) Calet, S.; Alper, H. Tetrahedron
Lett. 1986, 27, 3573. (f) Calet, S.; Alper, H. Organometallics 1987, 6,
1625. (g) Wang, M.-D.; Calet, S.; Alper, H. J . Org. Chem. 1989, 54, 20.
(h) Khumtaveeporn, K.; Alper, H. J . Org. Chem. 1994, 59, 1414. (I)
Khumtaveeporn, K.; Alper, H. J . Chem. Soc., Chem. Commun. 1995,
917. (j) Crudden, C. M.; Alper, H. J . Org. Chem. 1995, 60, 5579.
(6) Xiao, W.-J .; Vasapollo, G.; Alper, H. J . Org. Chem. 1998, 63, 2609.
(7) (a) Ogawa, A.; Kawabe, K.; Kawakami, J .; Mihara, M.; Hirao,
T.; Sonoda, N. Organometallics 1998, 17, 3111. (b) Ogawa, A.;
Kawakami, J .; Mihara, M.; Ikeda, T.; Sonoda, N.; Hirao, T. J . Am.
Chem. Soc. 1997, 119, 12380. (c) Ogawa, A.; Takeba, M.; Kawakami,
J .; Ryu, I.; Kambe, N.; Sonoda, N. J . Am. Chem. Soc. 1995, 117, 7564.
(8) Backvall, J . E.; Ericsson, A. J . Org. Chem. 1994, 59, 5850.
(9) (a) Trost, B. M.; Lavoie, A. C. J . Am. Chem. Soc. 1983, 105, 5075.
(b) Back, T. G.; Lai, E. K. Y.; Muralidharan, K. R. J . Org. Chem. 1990,
55, 4595. (c) Chou, S.-S. P.; Wey, S.-J . J . Org. Chem. 1990, 55, 1270.
(d) Padwa, A.; Gareau, Y.; Harrison, B.; Norman, B. H. J . Org. Chem.
1991, 56, 2713. (e) Plobeck, N. A.; Backvall, J .-E. J . Org. Chem. 1991,
56, 4508.
10.1021/jo9824246 CCC: $18.00 © 1999 American Chemical Society
Published on Web 02/20/1999