of the difluoroalkenes from electrophilic to the nucleophilic.
Thus, difluoroenol ethers and silyl ethers react with elec-
trophiles leading to R-substituted R,R-difluoroketones due
to the electron-donating nature of the ethereal oxygen atom
of 5 (5 to 6) in Scheme 2. Lewis acid-catalyzed carbon-
silyl ethers 9,11 but has never been reported. In this context,
the dipole-inversion approach would be promising to realize
the addition of a nucleophile to 5. The above hypothesis
suggests the oxidized form 7 should in principle react with
nucleophiles via simultaneous Si-O bond cleavage to
provide R-substituted R,R-difluoroketones 9; otherwise, the
transformation of 5 to 9 is difficult (Scheme 3).
The current demand in medicinal science for a variety of
difluoromethylene compounds,12 which have been less ex-
plored as compared with trifluoromethylated and mono-
fluorinated compounds, have prompted us to develop a new
synthetic method for difluoromethylene compounds. This is
the first example of the oxidative cross-coupling of difluo-
roenol silyl ethers with nucleophiles such as heteroaromatics
and alcohols.13
An extensive survey of oxidants [Cu(OTf)2, CuO, CuCl2,
Ag2O, CAN (cerium ammonium nitrate)], solvents [THF,
DMF, CH2Cl2, HFIP (hexafluoro-2-propanol), n-BuCN,
i-PrCN, n-PrCN, EtCN, MeCN] and reaction temperatures
revealed that a combination of copper(II) triflate and wet
acetonitrile at 0 °C was a choice for the optimized reaction
conditions and that the use of less polar solvents induced
the formation of triflate 17c. Although difluoroenol silyl
ethers are less oxidizable than nonfluorinated ones,14 the
Cu(II) reagent cleanly oxidized 10 at -30 °C to room
temperature within 15 min in acetonitrile to provide the dimer
2,2,3,3-tetrafluoro-1,4-diketones 11 in good to excellent
yields [11, Ar; C6H5 (71%), 4-ClC6H4 (72%), 4-MeC6H4
(70%), 4-MeOC6H4 (86%), 2-furyl (58%)] as shown in
Scheme 4.
Scheme 2
carbon bond formations of 5 with carbonyl compounds9 and
reactions with various electrophiles10 have been well dem-
onstrated and frequently employed as reliable methods for
introducing difluoroacyl moiety into organic molecules.
An important question is whether difluoroenol silyl ethers
5, typical nucleophiles react with other nucleophiles, afford-
ing R-substituted R,R-difluoroketones 9 or not? The trans-
formation of 5 to 9 as shown in Scheme 3, if possible, is
Scheme 3
Scheme 4
categorized as an addition reaction and would expand a scope
of the synthetic utility of the readily available difluoroenol
(5) For intermolecular reactions, see: (a) Tellier, F.; Sauvetre, R. J.
Fluorine Chem. 1996, 76, 181. (b) Shi, G.-Q.; Cao, Z.-Y. J. Chem. Soc.,
Chem. Commun. 1995, 1969. (c) De Tollenaere, C.; Ghosez, L. Tetrahedron
1997, 53, 17127. (d) Huang, X.-H.; He, P.-Y.; Shi, G.-Q. J. Org. Chem.
2000, 65, 627. For intramolecular reactions, see: (e) Ichikawa, J.; Wada,
Y.; Okauchi, T.; Minami, T. Chem. Commun. 1997, 1537. (f) Wada, Y.;
Ichikawa, J.; Katsume, T.; Nohiro, T.; Okauchi, T.; Minami, T. Bull. Chem.
Soc. Jpn. 2001, 74, 971. (g) Ichikawa, J.; Sakoda, K.; Wada, Y. Chem.
Lett. 2002, 282. (h) Sato, A.; Okada, M.; Nakamura, Y.; Kitagawa, O.;
Hirokawa, H.; Taguchi, T. J. Fluorine Chem. 2003, 123, 75.
(6) (a) Patel, S. T.; Percy, J. M.; Wilkes, R. D. J. Org. Chem. 1996, 61,
166. (b) Percy, J. M.; Prime, M. E.; Broadhurst, M. J. J. Org. Chem. 1998,
63, 8049. (c) Broadhurst, M. J.; Brown, S. J.; Percy, J. M.; Prime, M. E. J.
Chem. Soc., Perkin Trans. 1 2000, 3217. (d) Park, H. M.; Uegaki, T.; Konno,
T. Ishihara, T.; Yamanaka, H. Tetrahedron Lett. 1999, 40, 2985. (e)
Yamazaki, T.; Ueki, H.; Kitazume, T. Chem. Commun. 2002, 2670.
(7) As exceptional examples, 1,1-difluoroethene with sec-butyllithium
and 1,1-difluorovinyl phenyl ether with n-butyllithium undergo deproto-
nation-lithiation rather than addition of alkyllithiums. (a) Tellier, F.;
Sauvetre, R. J. Fluorine Chem. 1993, 62, 183. (b) Tellier, F.; Sauvetre, R.
J. Fluorine Chem. 1995, 70, 265. (c) Purrington, S. T.; Thomas, H. N. J.
Fluorine Chem. 1998, 90, 47.
Under the optimized conditions for homocoupling, cross-
coupling of 10d with furan 12 (X ) O) was studied (Scheme
(9) (a) Yamanaka, M.; Ishihara, T.; Ando, T. Tetrahedron Lett. 1983,
24, 507. (b) Xu, Y.-Y. J. Chem. Soc., Perkin Trans. 1 1993, 795. (c) Iseki,
K.; Kuroki, Y.; Asada, D.; Kobayashi, Y. Tetrahedron Lett. 1997, 38, 1447.
(10) For reaction with carbocations, see: (a) Whitten, J. P.; Barney, C.
L.; Huber, E. W.; Bey, P.; McCarthy, J. R. Tetrahedron Lett. 1989, 30,
3649. (b) Tellier, F.; Baudry, M.; Sauvetre, R. Tetrahedron Lett. 1997, 38,
5989. (c) Chorki, F.; Crousse, B.; Bonnet-Delpon, D.; Be´gue´, J.-P.; Brigaud,
T.; Portella, C. Tetrahedron Lett. 2001, 42, 1487. (d) Kodama, Y.; Okumura,
M.; Yanabu, N.; Taguchi, T. Tetrahedron Lett. 1996, 37, 1061. (e) Lefebvre,
O.; Brigaud, T.; Portella, C. Tetrahedron 1999, 55, 7233. (f) For the
reactions with other electrophiles, see: Prakash, G. K. S.; Hu, J. B.; Olah,
G. A. J. Fluorine Chem. 2001, 112, 357.
(11) (a) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K. Chem.
Commun. 1999, 1323. (b) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron
Lett. 2000, 41, 7893. (c) Amii, H.; Kobayashi, T.; Uneyama, K. Synthesis
2000, 2001. (d) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama, K. Org.
Lett. 2001, 3, 3103. (e) Amii, H.; Hatamoto, Y.; Seo, M.; Uneyama, K. J.
Org. Chem. 2001, 66, 7216. (f) Kobayashi, T.; Nakagawa, T.; Amii, H.;
Uneyama, K. Org. Lett. 2003, 5, 4297.
(8) Hydroalkoxylation and hydrothioalkoxylation of some 1,1-difluoro-
alkenes in protic solvents are known. (a) De Tollenaere, C.; Ghosez, L.
Tetrahedron 1997, 53, 17127. (b) Mae, M.; Amii, H.; Uneyama, K.
Tetrahedron Lett. 2000, 41, 7893.
2734
Org. Lett., Vol. 6, No. 16, 2004