1406
Russ.Chem.Bull., Int.Ed., Vol. 58, No. 7, July, 2009
Amirov et al.
Table 2. Logarithms of the apparent equilibrium constants for
the formation of the gadolinium(III) complexes with ligands 2a
and 2b in 10 mМ solutions of Brijꢀ35
Federation in the framework of the Target Program "Deꢀ
velopment of Scientific Potential of Higher School for
2006—2008" (Project No. 2.1.1.4794).
Equilibrium
logK
References
2a
2b
←
Gd3+ + H4L → [GdHL]0 + 3 H+
–8.4 0.1 –9.52 0.04
–13.34 0.1 –15.63 0.1
1. P. A. Rinck, Magnetic Resonance in Medicine, Blackwell Wisꢀ
senschafts Verlag, Berlin—Vienna, 2001.
←
Gd3+ + H4L → [GdL]– + 4 H+
2. P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer,
Chem. Rev., 1999, 99, 2293.
3. A. A. Popel´, Magnitnoꢀrelaksatsionnyi metod analiza neorꢀ
ganicheskikh veshchestv [Magnetic Relaxation Method of Analꢀ
ysis of Inorganic Substances], Khimiya, Moscow, 1978,
224 pp. (in Russian).
4. R. R. Amirov, Soedineniya metallov kak magnitnoꢀrelakꢀ
satsionnye zondy dlya vysokoorganizovannykh sred: primeꢀ
nenie v MRꢀtomografii i khimii rastvorov [Metal Compounds
As Magnetic Relaxation Probes for Highly Organized Meꢀ
dia: Application in Magnetic Resonance Imaging and Soluꢀ
tion Chemistry], Novoe Znanie, Kazan, 2005, 316 pp.
(in Russian).
Table 3. Logarithms of the apparent stability constants and the
RF1 values of the GdIII complexes with ligands 2a and 2b
Equilibrium
logβ
RF1
/L mol–1 s–1
2a
2b
2a
2b
Gd3+ + HL3– ←→ [GdHL]0 8.5 0.1 6.8 0.1 60000 110000
Gd3+ + L4– ←→ [GdL]–
10.1 0.1 7.8 0.1 60000 110000
5. I. D. Robb, J. Colloid Interface Sci., 1971, 37, 521.
6. R. R. Amirov, Z. A. Saprykova, Kolloid. Zh., 1994, 56, 160
[Colloid J. (Engl. Transl.), 1994, 56, 160].
7. L. Lattuada, G. Lux, Tetrahedron. Lett., 2003, 44, 3893.
8. Calixarenes 2001, Eds Z. Asfari, V. Bohmer, J. Harrowfield,
J. Vicens, Kluwer Academic Publ., Dordrecht—Boston—Lonꢀ
don, 2001, 683 pp.
9. C. D. Gutsche, Calixarenes Revisited, Monographs in Supraꢀ
molecular Chemistry, Ed. J. F. Stoddart, Royal Chemical Soꢀ
ciety, London, 1998, 233 p.
10. Calixarenes in Action, Eds L. Mandolini, R. Ungaro, Impeꢀ
rial College Press, London, 2000, 271 p.
11. A. I. Konovalov, I. S. Antipin, Mendeleev Commun., 2008,
18, 229.
12. M. Yaftian, J. Membr. Sci., 1998, 144, 57.
13. A. Mustafina, J. Elistratova, A. Burilov, I. Knyazeva, R. Zaiꢀ
rov, R. Amirov, S. Solovieva, A. Konovalov, Talanta, 2006,
68, 8638.
14. L. H. Bryant, Jr., A. T. Yordanov, J. J. Linnoila, M. W.
Brechbiel, J. A. Frank, Angew. Chem., Int. Ed. Engl., 2000,
39, 1641.
15. S. Aime, A. Barge, M. Botta, A. Casnati, M. Fragai,
C. Luchinat, R. Ungaro, Angew. Chem., Int. Ed. Engl., 2001,
40, 4737.
16. N. Morohashi, F. Narumi, N. Iki, T. Hattori, S. Miyano,
Chem. Rev., 2006, 106, 5291.
17. P. Lhotak, Eur. J. Org. Chem., 2004, 8, 1675.
18. N. Iki, N. Morohashi, F. Narumi, S. Miyano, Bull. Chem.
Soc. Jpn, 1998, 71, 1597.
19. N. Iki, F. Narumi, T. Fujimoto, N. Morohashi, S. Miyano,
J. Chem. Soc., Perkin Trans. 2, 1998, 12, 2745.
20. I. I. Stoikov, E. A. Yushkova, A. Yu. Zhukov, I. Zharov, I. S.
Antipin, A. I. Konovalov, Tetrahedron, 2008, 64, 7489.
21. Yu. I. Sal´nikov, F. V. Devyatov, N. E. Zhuravleva, D. V.
Golodnitskaya, Zh. Neorg. Khim., 1984, 29, 2273 [J. Inorg.
Chem. USSR (Engl. Transl.), 1984, 29, 1299].
The stability of the complexes formed in micellar soluꢀ
tions of the surfactant was estimated by the computer simꢀ
ulation of the pH dependences of the relaxivity. The comꢀ
plex analysis of the data showed that in acidic and neutral
media the Gd3+ ions form successively two highꢀrelaxivity
equimolar complexes with the triꢀ and tetraanions of the
ligands. The equilibria constants of complex formation
are given in Table 2.
The stability constants calculated using the acidꢀbase
properties of the studied thiacalixarenes (see Table 1) and
the relaxivity factors of the gadolinium complexes are listꢀ
ed in Table 3. As can be seen, the cone isomer (2a) forms
somewhat more stable complexes with gadolinium(III)
than the partial cone (2b) does.
Thus, to form highꢀrelaxivity complexes with gaꢀ
dolinium(III) ions, it is necessary that the molecule of the
tertꢀbutylthiacalix[4]arene ligand contains at least three
carboxyl substituent at the lower rim. The results obtained
showed that the cone and partial cone isomers are of most
interest as ligands for the design of potential contrast agents
in magnetic resonance imaging.
All studied complexes of thiacalixarene 2 possess high
spinꢀlattice relaxivity R1 (up to 60 000—110 000 L mol–1 s–1)
considerably exceeding the RF1 values of the commercial
contrast agents (3000—5000 L mol–1 s–1). However, inꢀ
sufficient stability (logβ ≤ 10) of these complexes does not
allow them so far to be proposed for practical use as conꢀ
trast agents (for the stability constants of the latter the
condition logβ ≥ 20 should be fulfilled).2
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 06ꢀ03ꢀ32063)
and the Ministry of Science and Education of the Russian
22. M. Nicolle, E. Toth, K.ꢀP. Eisenwiener, H. R. Macke, A. E.
Merbach, J. Biol. Inorg. Chem., 2002, 7, 757.