10.1002/chem.201704382
Chemistry - A European Journal
COMMUNICATION
room temperature with silyl formate HCO2SiEt3 (7 equiv) in the
presence of HSiEt3 (21 equiv) to quantitatively afford a mixture
of MeOSiEt3 and CH4 (15 and 85% conv., respectively; 24h,
C6D5Br), with catalyst 6+ retaining its integrity (Figure S33).
Under identical conditions, the stoichiometric reaction of 6+ with
a 1/1 HCO2SiEt3/HSiEt3 mixture leads to the fast formation of a
1/5 CH2(OSiEt3)2/MeOSiEt3 mixture (15 min, 50% conv. of
In summary, we first reported on discrete two-coordinate
Zn(II) organocations, presently of the type (NHC)Zn–R+, thanks
to NHC stabilization. Structurally analogous to ZnR2 compounds,
preliminary reactivity studies show such cations behave as
effective and selective π-Lewis acid catalysts for a number of
organic transformations of current interest, outperforming
classical Lewis acids such as B(C6F5)3 in some instances. These
HSiEt3) along with unreacted HCO2SiEt3 (Figure S34). Altogether, cations benefit from several attractive features which should
these observations suggest
a
Lewis-acid-mediated CO2
promote their further use and development, including: i) stability,
ii) possible tunability of the Lewis acidity (via the nature of the
NHC and Zn–R+ moieties) and iii) straightforward synthesis from
commonly used reagents. With Zn being a cheap and low toxic
metal source, this may lead to new developments in
fundamental and applied reactivity.
reduction catalysis with the initial CO2 functionalisation (i.e.
formation of HCO2SiEt3) being rate-limiting, followed by faster
sequential hydrosilylation of HCO2SiEt3 to CH2(OSiEt3)2,
MeOSiEt3 and finally CH4 (Scheme 4).
Acknowledgements ((optional))
The authors thank the CNRS, the University of Strasbourg and
the University of Lisbon for financial support. The high
computing center of the University of Strasbourg is
acknowledged for computing time. The laboratory of Prof. J.
Moran (ISIS, University of Strasbourg) is thanked for GC-MS
analysis.
Scheme 4. Stepwise hydrosilylation of CO2 to methanol-equivalent and CH4
catalyzed by cations 1+and 6+
Keywords: Zinc • organocation • carbene • Lewis acid •
hydrosilylation
[1]
[2]
T. Hirose, K. Kodama, in Comprehensive Organic Synthesis, eds. P.
Knochel, G. A. Molander, Elsevier B. V., Amsterdam, 2nd edition, 2014,
Vol. 1, pp 204-266.
For the initial functionalisation of CO2, DFT calculations
(BLYP/def2-SVP, Figure 4) agree with an initial CO2
activation/coordination by VI+ (VI-CO2, Figures 4 and S36),
followed by Et3Si-H attack at C=O (reactant complex A, Figures
4 and S37) to afford the hydrosilylated thermodynamic product C
through transition state B (ΔG = 21.6 kcal/mol, Figure 4). The
reaction energy barrier (22.8 kcal/mol) for CO2 functionalisation
by VI+ is compatible with experimental observations.
Selected recent examples: a) M. Haufe, R. D. Köhn, R. Weimann, G.
Seifert, D. Zeigan, J. Organomet. Chem. 1996, 520, 121; b) H. Tang, M.
Parvez, H. G. Richey, Organometallics 2000, 19, 4810; c) D. A. Walker,
T. J. Woodman, D. L. Hughes, M. Bochmann, Organometallics 2001,
20, 3772; d) M. D. Hannant, M. Schormann, M. Bochmann, J. Chem.
Soc., Dalton Trans. 2002, 4071; e) D. A. Walker, T. J. Woodman, M.
Schormann, D. L. Hughes, M. Bochmann, Organometallics 2003, 22,
797; f) M. Bochmann, Coord. Chem. Rev. 2009, 253, 2000; c) M. A.
Chilleck, T. Braun, B. Braun, Chem. Eur. J. 2011, 17, 12902. b) K.
Freitag, H. Banh, C. Ganesamoorty, C. Gemel, R. W. Seidel, R. A.
Fischer, Dalton Trans. 2013, 42, 10540; a) M. A. Chilleck, L.
Hartenstein, T. Braun, P. W. Roesky, B. Braun, Chem. Eur. J. 2015, 21,
2594.
[3]
[4]
Recent examples in polymerization, see : a) C. A. Wheaton, B. J.
Ireland, P. G. Hayes, Organometallics 2009, 28, 1282; b) C. Romain, V.
Rosa, C. Fliedel, F. Bier, F. Hild, R. Welter, S. Dagorne, T. Avilés,
Dalton Trans. 2012, 41, 3377; c) Y. Sarazin, J.-F. Carpentier, Chem.
Rev. 2015, 115, 3564.
Alkene/alkyne hydroamination: a) R. J. Wehmschulte, L. Wojtas, Inorg.
Chem. 2011, 50, 11300; a) A. Lühl, H. P. Nayek, S. Blechert, P. W.
Roesky, Chem. Commun. 2011, 47, 8280; b) M. A. Chilleck, T. Braun,
B. Braun, S. Mebs, Organometallics 2014, 33, 551; c) T. O. Petersen, E.
Tausch, J. Schaefer, H. Scherer, P. W. Roesky, I. Krossing, Chem. Eur.
J. 2015, 21, 13696.
[5]
Ketone and CO2 functionalisation catalysis : a) M. Khandelwal, R. J.
Wehmschulte, Angew. Chem. Int. Ed. 2012, 51, 7323; Angew. Chem.
2012, 29, 7435; b) A. Rit, A. Zanardi, T. P. Spaniol, L. Maron, J. Okuda,
Angew. Chem. Int. Ed. 2014, 53, 13273; Angew. Chem. 2014, 126,
13489; c) P. A. Lummis, M. R. Momeni, M. W. Lui, R. McDonald, M. J.
Ferguson, M. Miskolzie, A. Brown, E. Rivard, Angew. Chem. Int. Ed.
2014, 53, 9347; Angew. Chem. 2014, 126, 9501; d) D. Specklin, C.
Figure 4. DFT-computed (BLYP/def2-SVP, gas phase) Gibbs free energy
(kcal/mol) reaction of CO2 with HSiEt3 mediated by VI+ (model of 6+)
This article is protected by copyright. All rights reserved.