Journal of Materials Chemistry C
Paper
where h, kB, and T are Planck's constant, Boltzmann constant,
and temperature, respectively. The reorganization energies
upon intermolecular hole transfer (l) were obtained from l ¼
(E+* ꢀ E+) + (E* ꢀ E), where E, E+, E*, and E+* are the heat of
formations for an optimized neutral molecule, optimized cation
molecule, neutral state on cation structure, and cation state on
neutral structure, respectively, calculated at the B3LYP/6-31G(d)
level. Intermolecular hopping mobilities (m) were estimated
from the following eqn (3).
Notes and references
1 (a) A. Heckmann and C. Lambert, Angew. Chem., Int. Ed.,
2012, 51, 326–392; (b) G. Heimel, I. Salzmann, S. Duhm
and N. Koch, Chem. Mater., 2011, 23, 359–377; (c) S. Lo and
P. L. Burn, Chem. Rev., 2007, 107, 1097–1116; (d) Q. Zhang,
J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki and
C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706–14709; (e)
L. Deng, X. Wang, Z. Zhang and J. Li, J. Mater. Chem., 2012,
22, 19700–19708; (f) O. Usluer, S. Demic, D. Egbe, E. Tozlu,
C. Birchner, A. Pivrikas, A. M. Ramil and N. S. Saricici,
Adv. Funct. Mater., 2010, 20, 4152–4161; (g) B. Yan,
C. C. C. Cheung, S. C. F. Kui, H. Xiang, V. A. L. Roy, S. Xu
and C. Che, Adv. Mater., 2007, 19, 3599–3603; (h) Y. Yu,
O. Solomeshch, H. Chechik, A. A. Goryunkov,
R. F. Tuktarov, D. H. Choi, J. Jin, Y. Eichen and N. Tessler,
J. Appl. Phys., 2008, 104, 124505.
ed2
mhopping
¼
kET
(3)
kBT
where d is the intermolecular center-to-center distance of
adjacent molecules.
Thin-lm X-ray analysis
X-ray diffractions of vapor deposited thin lms on bare Si
2 (a) C. Li and H. Wonneberger, Adv. Funct. Mater., 2012, 24,
613–616; (b) C. Li, M. Liu, N. G. Pschirer, M. Baumgarten
and K. Muellen, Chem. Rev., 2010, 110, 6817–6855; (c)
X. Zhang and D. Zhu, Polym. Chem., 2010, 1, 409–419; (d)
T. W. Holcombe, C. H. Woo, D. F. J. Kavulak,
B. C. Thompson and J. M. J. Frechet, J. Am. Chem. Soc.,
2009, 131, 14160–14161; (e) E. Lim, S. Lee and K. K. Lee,
Mol. Cryst. Liq. Cryst., 2012, 565, 98–105; (f) F. Wuerthner
and K. Meerholz, Chem.–Eur. J., 2010, 16, 9366–
9373.
3 (a) A. Saeki, Y. Koizumi, T. Aida and S. Seki, Acc. Chem. Rev.,
2012, 45, 1193–1203; (b) H. Usta, A. Facchetti and T. J. Marks,
Acc. Chem. Rev., 2011, 44, 501–510; (c) M. Tang and Z. N. Bao,
Chem. Mater., 2011, 23, 446–455; (d) A. L. Kanibolotsky,
I. F. Perepichka and P. J. Skabara, Chem. Soc. Rev., 2010,
39, 2695–2728; (e) W. Wu, Y. Liu and D. Zhu, Chem. Soc.
Rev., 2010, 39, 1489–1502; (f) H. Huang, Z. Chen,
R. P. Ortiz, C. Newman, H. Usta, L. X. Chen, et al., J. Am.
Chem. Soc., 2012, 134, 10966–10973; (g) M. L. Tang,
T. Okamoto and Z. Bao, J. Am. Chem. Soc., 2006, 128,
16002–16003; (h) K. Xiao, Y. Liu, W. Zhang, F. Wang,
J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, et al., J. Am. Chem.
Soc., 2005, 127, 13281–13286.
4 (a) K. Niimi, S. Shinamura, I. Osaka, E. Miyazaki and
K. Takimiya, J. Am. Chem. Soc., 2011, 133, 8732–8739; (b)
T. Yamamoto and K. Takimiya, J. Am. Chem. Soc., 2007,
129, 2224–2225; (c) M. Uno, Y. Tominari, M. Yamagishi,
I. Doi, E. Miyazaki, K. Takimiya and J. Takeya, Appl. Phys.
Lett., 2009, 94, 223–308; (d) M. J. Kang, I. Doi, H. Mori,
E. Miyazaki, K. Takimiya, M. Ikeda and H. Kuwabara, Adv.
Mater., 2011, 23, 1222–1225; (e) K. Nakayama, Y. Hirose,
J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li,
M. J. Kang, M. Yamagishi, Y. Okada, E. Miyazaki,
Y. Nakazawa, A. Nakao, K. Takimiya and J. Takeya, Adv.
Mater., 2011, 23, 1626–1629.
substrates were obtained using a Rikagu Smartlab X-ray
˚
diffractometer with a Cu Ka source (l ¼ 1.541 A) in air. The
calculated inter-layer distances (d-spacing) are listed in Table 3.
Fabrication of the thin-lm transistors
Thin lms were deposited on an interdigitated Pt electrode array
with a gap of 2 mm over a 2 ꢃ 2 mm area (corresponding to 2 mm
gap and 1 m width) as source/drain electrodes (bottom-contact)
patterned on n-doped silicon substrates covered with a 300 nm
thick SiO2 layer. Prior to deposition, the substrates were cleaned by
sonication in acetone and isopropyl alcohol, followed by exposure
to O2 plasma. Films were deposited by vacuum sublimation
(pressure ꢄ 5 ꢃ 10ꢀ4 Pa) at a deposition rate 0.2–1.2 A sꢀ1 until a
˚
thickness of 100 nm was reached. Organic eld-effect transistor
measurements were carried out in a vacuum with a Keithley 2636A
dual channel source meter. The eld-effect mobility (mFET) was
calculated in the linear region of transfer curves.
Conductivity measurements upon chemical doping
The electrical conductivity of the thin-lms was measured by a
dc two-probe method utilizing the substrates from FET
measurements. The conductivity measurements on crystalline
samples were carried out by connecting gold wires at the
opposite edges of the crystal with gold paste. The sample was
placed in a glass chamber with a nitrogen atmosphere and
iodine vapor was gradually introduced into the chamber
through a valve. In each case, 1 V of constant voltage was
applied to the sample and the current was recorded with
Keithley 487 picoammeter upon iodine doping.
Acknowledgements
The authors gratefully acknowledge nancial support by a
Grant-in-Aid for Scientic Research from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of
Japan. The authors also thank Prof. Shigehiro Yamaguchi,
Dr Aiko Fukuzawa and Mr Kazuhiko Nagura (Nagoya University)
for their help in measuring the absolute quantum yield of the
obtained materials.
5 K. Takimiya, Y. Kunugi, Y. Toyoshima and T. Otsubo, J. Am.
Chem. Soc., 2005, 127, 3605–3612.
6 H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda,
H. Kuwabara and T. Yui, J. Am. Chem. Soc., 2007, 129,
15732–15733.
3480 | J. Mater. Chem. C, 2013, 1, 3467–3481
This journal is ª The Royal Society of Chemistry 2013